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Usually, the solution of a plane problem of the theory of elasticity in stresses is
reduced to solving a biharmonic equation for the Airy stress function. In this paper,
two (A and B) variants of plane boundary value problems of the theory of elasticity
are formulated directly in terms of stresses. In the first case (A), the boundary value
problem consists of two equilibrium equations and one Beltrami-Michell equation with
the corresponding boundary and additional boundary conditions. In the formulation of
the second plane boundary value problem (B), in contrast to the first, the equations of
equilibrium differentiated with respect to x and y, respectively, are used. Symmetric
finite-difference equations are constructed and the known Timoshenko-Goodier problem
of stretching a rectangular plate with a parabolic load is solved for comparison. The
discrete analogs of boundary value problems A and B are composed by the finite-difference
method and the iterative method and the marching method are used to solve them. By
comparing the numerical results of boundary value problems, A and B obtained by two
methods, the validity of the formulated boundary value problems and the reliability of
the obtained results are ensured.
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1 Introduction

The formulation of the boundary value problem of the theory of elasticity with respect
to stresses is an actual problem of applied mathematics and mathematical modeling. It
is known that model equations with respect to stresses are usually formulated within the
framework of the Saint-Venant compatibility equations. The Saint-Venant conditions,
using Hooke’s law and the equation of equilibrium, can be written in the form of Beltrami-
Michell equations. It is known that the boundary value problem in stresses consists of six
Beltrami-Michell differential equations, three equilibrium equations, and three boundary
conditions. In this case, problems of overdetermination of the number of equations and
insufficiency of boundary conditions arise. These problems underlie the research in the
field of formulation and numerical solution of boundary value problems with respect to
stresses.

The boundary value problem in stresses, in the three-dimensional case, was solved in
the work of Filonchenko-Borodich [9] by the variational method based on the expansion
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of the stress tensor in a series of trigonometric functions, etc. [11,12,20,21]. In [16],
the Beltrami-Michell equations were solved using Fourier integral transformation. In [17,
19], for the solution of three-dimensional problems in stresses, functions of stress of the
Maxwell and Morera type were used, similar to the two-dimensional case.

In the works of Pobedrya [2,3,5], a new formulation of the boundary value problem
in stresses is proposed, where the equilibrium equations are considered as boundary con-
ditions. In a special case, the new formulation follows from the classical Beltrami-Michell
equations. The works [10, 13| are also devoted to the study of the new boundary value
problem of Pobedri in stresses. The issues of the existence and uniqueness of the solution
of boundary value problems in stresses, and the equivalence of new and classical formu-
lations are considered in the following works [8,15]. Dynamic boundary value problems
with respect to stresses are considered in the works of Konovalov [14]|. Two-dimensional
problems in stresses are usually solved by introducing the potential of the stress function
of Eri satisfying the equilibrium equations and is reduced to solving the biharmonic equa-
tion [4,17]. In [22], a method for solving the three-dimensional problem of elastoplastic
deformation of a transversely isotropic body using the finite element method (FEM) is
presented. As an example, a solution to the problem of deforming a fiber composite in
the shape of a rectangle with a system of round holes is given.

This work is devoted to the formulation and numerical solution of the plane problem of
the theory of elasticity directly with respect to stresses. The plane problem based on the
Beltrami-Michell equations is formulated in two variants. At the same time, it consists of
two equilibrium equations, and one Beltrami-Michell equation, and two boundaries and
one additional conditions on each side of the rectangle. Discrete equations are constructed
by the finite-difference method, and are solved by the iterative method and the marching
method.

2 Boundary value problem in elasticity in stresses

It is known that the boundary value problem of the theory of elasticity in stresses
consists of the equilibrium equation, the Beltrami-Michell equation, and the corresponding
boundary conditions [1,2|. In the absence of body forces, the boundary value problem
takes the form

Oij,; = 0, (1)
VQ 0ij + H—USVL] = 07 S = Ok, (2)
oijnjls- = Si. (3)

Where S;— is the surface load, > — is the surface of the volume V consisting of two
parts > ,—,> ,—, n;— is the components of the external normal to the surface ), v— is
the Poisson’s ratio, V2— is the Laplace operator.

The system of equations (1-3) consists of six Beltrami-Michell equations and three
equilibrium equations with the corresponding boundary conditions. Clearly, the number
of differential equations is equal to nine, and the boundary conditions are three, and the
boundary value problem is open.

According to the studies of Pobedrya [2, 5, 8], considering the equilibrium equation on
the boundary of a given domain as a boundary condition, i.e.

Uij}j 5 = 0. (4)
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This, in combination with the equations (1-3), represents the boundary value problem of
the theory of elasticity in stresses. Note that considering the equilibrium equation on the
boundary of the given domain V allows us to formulate the boundary value problem of
the theory in a closed form with respect to stresses.

3 Plane problem of the theory of elasticity in stresses
In the case of plane stress (0., = 0,, = 0.,), equations (1-3) take the following form:

do, 0oy

do, 0oy

y o ®)
D0y Doy 1 0%, 0%,

) =0, (7)

0x? + Oy? * 1+ v(axay * 0xy
with boundary conditions
(Ua:nl + nyn2)’ r = Slv

(nynl + O'yng)| T = SQ,

and, with additional boundary conditions

Oo,  0ogy

(ax 8y )F _O’
(9)

(% 80@) —0

oy or |,

Thus, equations (5-9) represent a plane boundary value problem of the theory of
elasticity in stresses (Problem A), which can be solved numerically directly with respect
to stresses. By differentiating equations (5) and (6), respectively, with respect to x and
the second with respect to y, the following boundary value problem in stresses (Problem

B) can be formulated.
Do, Doy,

= 10
Ox? * 0xdy 0 (10)
2 2
%o, (’9axy:0’ (11)
oy?  Oxdy
820@ 82011; 1 0%, 320y
: = 0. 12
0x? + 0y? * 1+ v(axay 8x8y) 0 (12)

But the boundary conditions are the same as in problem A (8-9). Note that the order of
approximation of the finite-difference equations (10-11) is higher than that of (5-6). Let
problems A and B be considered in a rectangular region and the plate is under tensile
forces on two sides along the OX axis, the other sides are free of loads, i.e.

for:x==%a:04|s=10 =39, Ouylo=ta =0, (13)

fO?“ LYy = +b: O-y‘y:ib = O7 O'J;y‘y:ib = 0. (14)

In this case, the additional boundary conditions (9) for a rectangular domain are as follows

0 Jo,
for:x=+a: {Giyy} lomta = — [ gxy] [——— (15)
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(16)

Jdo,, do,
fory==b: {Gx ] lymip = — { ayy] [

Thus, it is not difficult to see from the relations (13-16) that there are three boundary
conditions on each side of the rectangle.

4 Finite-difference equations for the plane problem of the theory
of elasticity in stresses

Let boundary value problem A (5-9) be considered in a rectangle with side lengths
[y = 2a and [y = 2b. By dividing the lengths of the sides of the rectangle into N, we can
find the grid step hy = Iy /N, k = 1,2 along the coordinate axes. Then the coordinates
of the nodal points have the form z; = —a + ihi(i = 0,n1), y; = —b+ jhy (j =
= 0,n2) [3,6]. Replacing the derivatives in equations (5-7) with the corresponding finite
difference relations, we can find that.

T T Yy Yy
Oiv15 — 0ij  Oij+1 — 0451
J "% % =1 g, 17
hq 2hs (17)
Oijt1— 04 n 01y~ Tity —0 (18)
ho 2hy ’
Oit1y — 205 Y05 Oign — 20 + 05
hi h3
of ., . ,—0cr . —0%..  +o¥. .
4 1 { i+1,5+1 i—1,7+1 i+1,5—1 zfl,]fl_'_ (19)
1+wv 4hyhy
" Uiyﬂ,jﬂ - O-gfl,jJrl - O-g+1,jfl + O-g/fl,jfl} —0
4hihsy '
Replacing the first term in equation (17) with the left boundary condition, we can find
that
Ol ~ Oy | Tign —%ig1 (20)
hy 2hs o
From the equations (17) and (20), we can find that
2055 = 0415 T i1y (21)
Similarly, from equation (18), we find that
20% = Uzjﬂ + sz_l. (22)
Solving the finite-difference equations (19-21) and (22) with respect to of;, oj; and o}}
and taking the following renaming’s of of; = O'(I?J)», o = o™ and o™ = o™ the following
1 x? ) y] 1) zyt]

relationships can be found:

(k)

(k)

(k+1) _ Tait1y T 0415 (23)
eif T 2 ’

(k) (k)
(h+1) _ Tyigr1 + 0yij—1 (24)

yl

2 ’
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(k) (k) (k) (k)
(k1) _ {Uzyi-‘rl,j t0, i1  Ouijrt T 0,01

ij 2 2
=y h? h3

(k) (k) (k)
1 o, -0
{ x 17.7 1

1+v

k k k
ii-)&-l,j-&-l - Uii)—l,j-i—l - O-?Ei—)&-l,j 1+ 57,) 1,j—1
W g + b

4hyhy
where the indices are changed in the interior points, i.e., 1 <i<n;—1, 1 <7< ny—1,
and k is iteration number.
According to (13) and (14), the boundary conditions are as follows:

_ (k)
wiclj+1 — Ogid1j—1 T 0giz1-1 n (25)

4h1h2

g

for:x=Fa:
oy =8, 0l =0, (26)
J;O)NU =5, ai% Ny =0,
for y=Fb:
00 =0: 1) =0, (27)
01(40)1'N2 =0, afsg)iNg =0.

Additional boundary conditions (13-14) with respect to nodal points have the form:
for x = Fa:

o0 _ 50
0 _ 50 _wly  ww0j
Ty 05 = %y 0441 + he hy ’ (28)
70  — 50 h Ug’z)nhj B O-“(”g)nlflvj
¥ 05 T Ty ni,j+1 2 hl )
for y = Fb:
0) _ 500
o o
() (0) oy i1 2y 40
9. %0 — % "it10 + h d
2 29
A () (29)
o0 = 50 B I i Tl
z ino - O-I 1+1,n2 + hl h2

The finite-difference equations (23-29) can be solved using an iterative method.
The finite-difference equations of problem B (10-12), similarly to problem A, can be
written in the following form:

T T T zy X xy Yy
Oit15 — 201’,3‘ T 01, Oitij+1 — Oig1j—1 — Oiij41 T Tis1 i1 o 30
hy? * 4hyh =0, (30)
1 1he
y y y xy oY Ty
Op w1 — 205, + 0,1 Oy w1 — 0l —a? 1j-1+ Jz-i—l At _ g (31)
hy? * 4hyhs o
Ty zy xy ry
Oiy1; — 204 + 0 1j . Tij+1 — 205 "“7”1
h? h2
1 2
" T X X
I (0141~ Tic141 — Oigrj-1 T 0ii1j-1 (32)
+ { +
1+ 4hihgy

Y ) Yy )
Oit1j+1 — Oim1j41 — Oip1j—1 T Oi—l,j—l} _0

+ Ly
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Solving the finite difference equations (30, 31) and (32) for o7
(k) y _ (k) (k)

7, 0y and 0, and taking

the following notations of; = 0,35, o}, =055, and 0/ =0, ;, we can ﬁnd, respectlvely
") (k) (k) (k) (k) (k)
(k+1) — ( zz+1,J + gzl 1,7 + O-wyi+1vj+1 T O-xyH‘Lj_l B O-myi_lvj+1 + nyi—l,j—l )/(i) (33)
=t hi? 4hyhs hi?”
) (k) (k) (k) (k) (k)
(k+1) _ = ( OLit1; T 01 1 Oyitljrl — Opit1 i1~ Og i1+l T Ozyi—l,jfl)/(i) (34)
vhd hy? 4hyhsy hy*”
(k) (k) (k) (k)
(k+1) — ¢ Oyitly T 0,i1j  Ooijrl T 04651
zyty h2 h%
k k k k
n 1 {Ua(ci—)&-l,j—&—l - Uiz)— 1,j+1 Uii—)i-l,j—l + Uii)—l,j—l n (35)
1 + v 4h1h2
(k) (k) (k) (k)
O it141 — Oy i—15+1 — 9 it1,5—1 to 0, i=1,j-1 1/ { }
4hihs h3 h2

Boundary conditions have the same form (26-28). Finite-difference equations (33-35) can
be solved by the iterative method.

To solve problem B, the method of alternating directions can be applied within the
framework of the marching method. For this purpose, the finite-difference equations (33-
35) can be written in the following form:

z+1g+b0— +Clzlj: 7,’xj7
a; ”-H-I—b-a + ¢;0? L= %, (36)
dl z+1j+b0-xy+clzlj: 57

z+1j+b0 +Cl i— 1j: zyj

Thus, the solution of problem B is reduced to the sequential application of the marching
method for the system of four equations (36). In this case, the initial parameters of the
marching method are determined according to the boundary conditions (26-28).

5 Numerical examples

This section is devoted to the numerical solution and justification of the validity of
the formulated boundary value problems A and B with respect to stresses. The finite
difference equations of boundary value problems A and B were solved using the iterative
and the marching methods. The problem of stretching a rectangular plate with a parabolic
load was solved and the numerical results obtained by different methods were compared.

Let a rectangular plate of size [, = 2a,ls = 2b be under the action of a parabolic load
applied to the opposite sides perpendicular to the axis OX. The other sides are free of
loads. This problem, using the Airy function and the condition of minimizing the strain
energy, was solved in the work of Timoshenko and Goodier [4].

In our case, this problem is formulated as boundary value problems A (5-7) and B (10-
12) with corresponding boundary (8) and additional (9) boundary conditions. Boundary
(8) in the case of a tensile parabolic load has the

2

o _Yy —
for:x=2a: 0. = So(l aQ)’ Oy =0, (37)

for:y==xb:0, =00, =0.
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Figure 1 Rectangular plate under parabolic load

In this case, the initial data had the following values A = 0.78, u = 0.5, a =1
b=1,hy =hy=0.2.

The first two rows of Table 1 show the values of the stresses o,, at the section x = 0,
obtained by solving problems A [12| and B by the iterative method. The third row of
Table 1 shows the numerical results of problem B obtained by the method of alternating
directions within the framework of the marching method. The fourth row shows the
solutions found by Timoshenko-Goodier [4] by the variational method. The closeness of
the results obtained shows the validity of the formulated boundary value problems A and
B in stresses, as well as the methods of their numerical solution. Taking into account
the symmetry conditions, the table shows the numerical results for one quarter of the
rectangle.

Y

Table 1. Values of the stresses

Problems x=0; y=-1 y=-038 y=-06 y=-04 y=-02 y=0
Problem A [12] 0.3371 0.3371 0.5992 0.7865 0.8988 0.9363
Problem B 0.3221 0.3257 0.5726 0.8589 0.8589 0.8947
The marching method ~ 0.3404 0.5166 0.6536 0.7915 0.8302 0.8798
Timoshenko [4] 0.3404 0.5166 0.6536 0.7515 0.8102 0.8298

6 Conclusion

Within the framework of the Beltrami-Michell equations, two planar boundary value
problems (A and B) of the theory of elasticity in stresses are formulated. The first
boundary value problem A consists of two equilibrium equations, and one Beltrami-Michell
equation with the corresponding boundary and additional boundary conditions. The
additional boundary conditions are obtained on the basis of the equilibrium equations. In
the case of the planar boundary value problem B, the differentiated equilibrium equations
are used in the formulation of the boundary value problem, respectively with respect to
x and y. The discrete equations are composed by the finite-difference method and solved
by the iterative method and the successive application of the marching method.

The numerical solution of the problem of the equilibrium of a rectangular plate under
the action of a parabolic load applied to the opposite sides is solved. The validity of the
formulated problems and the reliability of the numerical results are ensured by comparison
with the known solutions of Timoshenko-Goodier.
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CPABHUTEJIbHBII AHAJIN3 YN CJIEHHBIX METO/I0B
PEIITEHNA 3AJAY TEOPUN VYVIIPYTI'OCTU B
HAITPAZKEHNAX

! Xanodostrcueumos A., ' Adambaes Y., '* Tunrosos O., 2Paxmonosa P.,
?Maxmadueposa M.
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'Hanuonambublii yEuBepcuTer Y36ekucrana umenu Mupso Yiyroexa,
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2Camapkanackuil ¢puaman TaIIKeHTCKOro yHIBEpCHTeTa, HH(POPMAIOHHBIX
rexuoorutt 140100, ¥V36exucran, Camapkam, yia. [loxpyx Mupszo 47A.

O06®I9HO, pereHue MIOCKOW 33a9a TEOPUH YIPYTOCTH B HANMPSXKEHUSIX CBOAUTCH K
pEIIeHNI0 OUTapMOHUYECKOI'0 YPaBHEHUsI OTHOCUTEIbHO (DYHKIINKU HAIpsizkeHuit dpu. B
JTaHHOI pabore, cchopmyaupoBanbl ABa ( A u B) BapmanTa MIOCKAX KPAEBBIX 33189 TEO-
pHH YyIIPYTOCTH HEMOCPEJICTBEHHO OTHOCUTEILHO HapsizKeHuid. B mepsom ciydae(A) kpa-
eBas 33/1a9a COCTOUT M3 JBYX yPaBHEHUN PABHOBECHH, W OJHOTO ypaBHEHUs Besbrpamun-
Mudenna ¢ COOTBETCTBYIOMMMEA TPAHUIHBIMA U JIOTTOJTHUTEIbHBIMU TPAHUIHBIMHA YCI0-
Busivu. [Ipu dbopmympoBKe BTOPOI TLI0CKOI Kpaesoit 3agaqaun(B), B orimame 0T neppoit
UCIIO/TH30BaHbI PO/ indDEPEHITUPOBAHHLIE 10 & U Y, COOTBETCTBEHHO YPaBHEHUsI PABHO-
Becud. [locTpoensl cmMMeTpHUYHBIE KOHEYTHO-DA3HOCTHBIE YPAaBHEHUS W /S CPaBHEHUS
perrena u3BectHad 3aga4da Tumornenko-I"yabepa o pacTsKennu npsiMOyroibHON IL1acT-
HBI Tapabonndeckoii HArpy3Koil. JInckpeTHbIe aHAJIOTH KpaeBbiX 3a1a9 A u B cocraB/ieHb
KOHEYHO-PA3HOCTHBIM METO/IOM W I PEITeHUs MTPUMEHEHBI UTEPAINOHHBIN METO U Me-
ToJ1 iporouku. CpaBHEHNEM YHCIEHHBIX PE3YILTATOB KPAEBhIX 3a1a41 A 1 B, momyaennbIx
JIBYMsI METO/IaMu, 0DeCIeunBaeTCsi CIIPABEIIUBOCTb C(OOPMYIUPOBAHHBIX KPAEBBIX 3aJ1a4d
¥ JIOCTOBEPHOCTH IIOJIy9€HHBIX PE3YJIbTATOB.

Kurouesbie ciioBa: repmoyupyrocts, yciaosue cosmecranocru Cen-Benana, nedopma-
s, KOHe‘IHO—paSHOCTHbeI METOH, dBHad M HEdBHadAd CXEMBbI, METOJ IIPOTOHKN, KpacBad

3a1ad9a.

Iuruposannme: Xaadocueumos A., Adambacs V., Tunrosos O., Paxmonosa P., Maxma-
dueposa M. CpaBHUTEILHBIN aHa N3 YUCIEHHLIX METOIOB PelleHnsd 3aJad TeOPUH YIpPY-
rocru B Hampsizkennsax // IIpo6aeMbl BBIYHCIUTENBHON W MPUKJIATHON MATEMATUKH. —
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