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This study investigates the classification of rooftop shapes using convolutional neu-
ral networks (CNNs), with a particular focus on regional adaptation through transfer
learning. Initial training of the AlexNet architecture utilizes a publicly available Zenodo
dataset comprising satellite imagery of flat, gabled, and hipped roofs. To address gen-
eralizability constraints in specific geographic contexts, a custom dataset of Uzbekistan
rooftops, sourced from OpenStreetMap and high-resolution Mapbox Static Images API
tiles, enables fine-tuning. Experimental outcomes reveal enhanced classification accu-
racy for flat, gabled, and hipped roofs, underscoring the efficacy of transfer learning in
mitigating domain shift due to architectural and environmental variations. Integration
of open-source geospatial tools with transfer learning offers a replicable framework for
addressing geographic bias in rooftop shape classification, adaptable to other underrep-
resented regions.
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1 Introduction

Automated classification of roof shapes has become a vital component in various do-
mains, including urban planning, disaster risk assessment, solar panel installation, and
insurance modeling [6,7]. With the proliferation of satellite imagery and advances in
deep learning, particularly convolutional neural networks (CNN), considerable progress
has been made in the analysis of built environments from aerial and remote sensing
data [1, 8|.

However, pretrained CNNs and existing public datasets—such as those from Inria,
Wuhan University (WHU), or SpaceNet—are predominantly developed using imagery
from Western urban environments. Consequently, these models often exhibit limited gen-
eralization when applied to underrepresented regions like Uzbekistan, where architectural
styles, building densities, and environmental textures differ significantly [2,9, 10].

To address this domain gap, we leverage transfer learning techniques to adapt a pre-
trained AlexNet model [1] to the local context of Uzbekistan. We begin by training
the model on the global roof shape classification dataset hosted on Zenodo 2|, consist-
ing of flat, gabled, and hipped roofs. To localize the model, we created a new dataset
by extracting rooftop geometries from OpenStreetMap [4] and retrieving high-resolution
satellite imagery using the Mapbox Static Images API [5]. These localized images were
manually reviewed, categorized, and used to fine-tune the CNN model.
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The primary objective of this study is to assess how transfer learning improves classi-
fication performance on localized satellite imagery. We hypothesize that adapting CNNs
to region-specific data will significantly enhance the accuracy of roof shape detection in
geographies that are otherwise poorly represented in global datasets.

2 Related Work

Recent developments in deep learning and computer vision have significantly advanced
the analysis of remote sensing imagery for geospatial tasks [8]. Convolutional neural
networks (CNNs) have been particularly effective, with well-established architectures such
as AlexNet [1], VGGNet [11], and ResNet [12] achieving strong results in various domains,
including building footprint detection, road extraction, and scene classification.

In the specific domain of rooftop analysis, several datasets—such as the Inria Aerial Im-
age Labeling dataset, WHU Building Dataset, and SpaceNet—have been widely used for
training and benchmarking models |7, 10]. However, these datasets are largely composed
of imagery from high-income and Western urban areas, which introduces significant biases
when models are applied to less represented regions such as Central Asia. This geographic
imbalance leads to a domain shift, often resulting in poor generalization performance on
structurally different urban layouts [9].

To address this issue, the use of transfer learning has gained traction. By reusing
pretrained CNN weights and fine-tuning on target-domain data, researchers have success-
fully adapted models to novel geographic contexts with minimal labeled data [2,9]. In
remote sensing, such strategies have proven effective for land use classification, disaster
monitoring, and building detection [8,13].

Our contribution is novel in two aspects. First, we focus explicitly on rooftop clas-
sification in Uzbekistan—a region absent from existing roof shape datasets. Second, we
build the fine-tuning dataset using open-source geospatial resources, namely the Mapbox
Static Images API [5] and OpenStreetMap vector geometries [4]. This not only ensures
reproducibility but also demonstrates how public tools can be combined with transfer
learning to enhance model performance in underrepresented regions.

3 Dataset and Preprocessing

3.1 Zenodo Roof Dataset

The initial model training was conducted using a publicly available dataset hosted
on Zenodo [2]|, which contains labeled satellite imagery of rooftops across various global
regions. This dataset includes three primary rooftop geometries commonly found in resi-
dential architecture: flat, gabled, and hipped roofs as shown in Figure 1.

To prepare the data for input into the neural network, all images were resized to 256 x
x 256 pixels, normalized to the range [0, 1], and the class labels were converted to one-hot
encoded vectors suitable for categorical classification tasks.

Normalization was performed as follows for each pixel value p € [0, 255]:

p
Prnormalized = ﬁ (1)

This transformation ensures that the pixel values are distributed uniformly and helps
the network converge faster during training.
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(a) Flat roof (b) Gabled roof (c) Hipped roof

Figure 1 Examples of different roof types from the Zenodo dataset.

4 Uzbekistan Roof Imagery

To assess the generalization capabilities of the model on region-specific data, we created
a custom dataset of rooftops located in various urban zones of Uzbekistan as shown in
Figure 2.

ELN

(a) Flat roof (b) Gabled roof (c) Hipped roof

Figure 2 Examples of different roof types from the Uzbekistan dataset.

4.1 Geolocation Data Extraction

Rooftop geometries were sourced from OpenStreetMap (OSM) using the Quantum
Geographic Information System (QGIS) application and the QuickOSM plugin. The
extracted data included multipolygon representations of buildings in GeoJSON format,
where each rooftop is described as a closed polygon or a set of polygons.

4.2 Centroid Calculation

To retrieve satellite imagery centered over each rooftop, the centroid of each polygon
was computed. For a polygon defined by N vertices with coordinates (x1, 41), (2, y2), - . .,
(xn,yn), the centroid C' = (Z,y) is calculated using the arithmetic mean:

1 & 1 &
:E:NZ@-, EZNZ%- (2)
i=1 i=1

This centroid location represents the average spatial position of the rooftop and was
used as the anchor point for image retrieval.

4.3 Satellite Image Acquisition

Each centroid was passed to the Mapbox Static Images API |5], which returns high-
resolution satellite imagery tiles at a specified zoom level. We selected zoom level 19,
which provides building-scale resolution. To convert geographic coordinates (latitude ¢,
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longitude A) into tile coordinates (z,y) at zoom level z, we used the following standard
Web Mercator projection formulas:

n—%, o= {%”J Yo {1—log(tan(gp2)+sec(g0))/7r.nJ’ )

where:

— tan(yp) is the tangent of latitude,

— sec(p) = @ is the secant of latitude,

— |-] denotes the floor function.

The resulting tiles were downloaded and saved into class-labeled folders (e.g., flat/,
gabled/, hipped/) based on manual inspection. Only those tiles with minimal occlusions,
visible rooftops, and correct geometries were retained to ensure label integrity. The final
dataset was approximately balanced across the three classes.

4.4 Data Augmentation

To enhance the generalization capabilities of the model and mitigate potential over-
fitting due to limited training samples, we applied data augmentation techniques. These
augmentations artificially expand the training set by introducing variations in the input
images while preserving semantic content. The following transformations were applied
only to the training set:

— Random rotations within £30°, simulating satellite orientation noise,

Horizontal flips, mimicking viewing angles from opposite directions,

Width and height shifts up to 20% of the image size, accounting for positioning errors,
Zooming and shearing (20%), introducing slight geometric distortions.

These techniques preserve the underlying class semantics while allowing the network
to learn invariance to typical image perturbations observed in satellite imagery.

5 Methodology

5.1 Model Architecture

For the task of rooftop shape classification, we selected AlexNet [1] as the base con-
volutional neural network (CNN) architecture. Originally introduced by Krizhevsky et
al. for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), AlexNet has
proven to be effective in image classification tasks across a variety of domains, due to its
ability to extract hierarchical features from moderately sized datasets |1, 14].

The AlexNet architecture comprises eight learnable layers, organized as follows:

— Five convolutional layers that apply 2D kernels across the input image to extract
local spatial features. Each convolutional layer is followed by RelLU activation to in-
troduce non-linearity, and batch normalization to stabilize and accelerate convergence.

— Three max-pooling layers, interleaved between convolutional layers, downsample
the feature maps by selecting the maximum value within a local window. This reduces
spatial dimensions and provides translation invariance.

— Two fully connected (dense) layers, each with a large number of neurons (typically
4096), aggregate features across the entire image and serve as high-level classifiers.

— A final softmax output layer, which produces a probability distribution over the
three target classes: flat, gabled, and hipped roofs.
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To mitigate overfitting and encourage generalization, we applied dropout reqularization
between the dense layers. In this approach, during training, a proportion p of neuron
activations are randomly set to zero. We used a dropout rate of p = 0.6, following the
empirical recommendations for medium-scale datasets [14].

Additionally, L2 weight regularization (also known as weight decay) was employed.
This technique adds a penalty term to the loss function that discourages large weight
magnitudes, and is expressed as:

£total - £(:ross—entropy + A Z wizv (4)

i=1
where:

— Leross-entropy 1S the primary classification loss (see Section 12),
— w; are the learnable weights of the network,
— A is the regularization strength hyperparameter.

This formulation biases the model toward simpler hypotheses, reducing the risk of
memorizing noise in the training data. The combination of convolutional filtering, pool-
ing, non-linearity, regularization, and fully connected layers makes AlexNet a power-
ful yet computationally tractable model for visual recognition tasks involving moderate-
resolution satellite images [8, 11].

5.2 Training Strategy

The initial training of the AlexNet model [1] was conducted using the global roof shape
dataset from Zenodo 2|, which served as the source domain. The model was trained from
scratch—i.e., all weights were initialized randomly—using the Adam optimizer [14], which
combines the advantages of both Adaptive Gradient Algorithm (AdaGrad) and Root Mean
Square Propagation (RMSProp).

Adam updates network parameters based on adaptive estimates of lower-order mo-
ments and is defined by the following update rule:

~

my
6, =0, —a —1t 5
t t—1 « \/@—t_’_g ()

where:

— 0, are the model parameters at time step t,

— « is the learning rate (set to 0.0001),

— my and 0, are the bias-corrected estimates of the first and second moments of the
gradient,

— ¢ is a small constant to prevent division by zero.

The loss function used was categorical cross-entropy, suitable for multi-class classifi-
cation where labels are one-hot encoded. It is computed as:

c
Lop = — Z yi log (i), (6)
i=1

where:

— (' is the number of classes,
— y; is the ground truth label (1 if the class is correct, 0 otherwise),
— 9; is the predicted probability for class .
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Training was performed for up to 50 epochs. To prevent overfitting and optimize
computational efficiency, we applied early stopping, which halts training if the validation
loss does not improve for five consecutive epochs.

In addition, we implemented learning rate scheduling via ReduceLROnPlateau. When
the validation loss plateaued, the learning rate was reduced by a factor of 0.5. A minimum
learning rate threshold of ap,;, = 1 x 107% was enforced to prevent excessively small
updates.

This strategy ensures both stable convergence and adaptive training dynamics, which
are critical when training CNNs on moderately sized remote sensing datasets [8].

5.3 Class imbalance handling.

To address the significant class imbalance in the Uzbekistan roof shapes dataset—
where hipped roofs constituted the majority class—we computed class weights using the
compute_class_weight function from scikit-learn. These weights were incorporated
into model training via the class_weight parameter in the fit () function to penalize
underrepresented classes more heavily and promote balanced learning.

The class distribution in the training set was as follows:

— Flat: 104 samples
— Gable: 263 samples
— Hipped: 742 samples

The resulting class weights were:
{0: 3.55, 1: 1.41, 2: 0.50}.

This reweighting strategy helped mitigate bias toward the dominant class and im-
proved the model’s ability to correctly identify underrepresented roof types, particularly
flat and gable categories.

5.4 Evaluation on Uzbekistan Data

To assess the model’s generalization capability, the pretrained network—trained solely
on the Zenodo dataset—was evaluated on the custom dataset of rooftop images from
Uzbekistan, introduced in Section ?7. This step was crucial for simulating a domain
shift scenario, where the model is exposed to imagery from a different geographic and
architectural context.

We employed four standard metrics for multi-class classification evaluation:

— Accuracy: the proportion of correctly predicted samples.

A TP+TN 7)
ccuracy = :
= TP Y TN+ FP + FN
— Precision (per class): the proportion of true positive predictions over all predicted
positives.
TP
Precision = ———. 8
recision = - (8)
— Recall (per class): the proportion of true positive predictions over all actual posi-
tives. Tp
Recall = ————. 9
T TPy FN (%)

— F1l-score: the harmonic mean of precision and recall.

Precision - Recall

Fl1=2. )
Precision + Recall
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The results highlighted a significant drop in performance, confirming the presence
of a strong domain gap due to differences in roof geometries, illumination, and texture
between the Zenodo and Uzbekistan datasets [9]. This underperformance motivated the
use of fine-tuning, detailed in Section 12.

5.5 Fine-tuning on Uzbekistan Roofs

To overcome the limitations of domain shift, we employed a transfer learning strategy
by fine-tuning the pretrained AlexNet model [1] on the Uzbekistan specific rooftop dataset.
Transfer learning allows the reuse of knowledge from a source domain (global roof imagery)
and adaptation to a target domain (Uzbekistan architectural context), even when the
latter has fewer labeled samples [9, 13].

The fine-tuning procedure included the following key steps:

— Loading pretrained AlexNet weights: The model trained on the Zenodo dataset
served as the initialization point. The early convolutional layers, which extract general
low-level features (edges, textures), were retained.

— Freezing convolutional layers: To preserve learned general features, all convolu-
tional layers were frozen, meaning their weights were not updated during fine-tuning.

— Replacing fully connected layers: The top classifier layers were removed and re-
placed with new trainable dense layers, customized for the three-class roof classification
task. This part of the network learns features specific to the Uzbekistan dataset.

— Using a reduced learning rate: A small learning rate of o = 1 x 10™° was used
to prevent catastrophic forgetting and ensure gradual adaptation. The model was
fine-tuned for 25 epochs, with early stopping and learning rate reduction enabled (see
Section 12).

This approach leverages the feature extraction capabilities of a globally trained CNN
while allowing selective learning of domain-specific representations, in line with established
practices in geospatial deep learning [6, 7].

5.6 Training Curve Analysis

To monitor training progress and assess model behavior, we recorded and visualized
both training and validation metrics—accuracy and loss—across all epochs for the baseline
and fine-tuned models. The results are shown in Figures 3 and 4.

The training curves show marked differences in learning dynamics:
Baseline Model (Figure 3)

— Overfitting is evident: while training accuracy steadily improves and surpasses
85%, validation accuracy remains significantly lower and fluctuates throughout the
epochs.

— Validation instability: the validation accuracy curve shows abrupt changes and
lacks a consistent upward trend, indicating poor generalization and possible domain
mismatch with the test data.

— Loss convergence: although both training and validation loss decrease smoothly and
nearly identically, the discrepancy between accuracy metrics highlights the model’s
limited applicability to local conditions.

Training line graph of the beaseline model
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Figure 3 Training and validation accuracy and loss curves of the baseline AlexNet trained ex-
clusively on Zenodo data.

Fine-tuned Model (Figure 4)

— Rapid adaptation: the model demonstrates fast convergence, with training accu-
racy increasing sharply within the first few epochs—leveraging the general knowledge
gained from global data.

— Improved generalization: both training and validation accuracies stabilize around
60-65%, considerably outperforming the baseline model on local Uzbekistan rooftop
imagery.

— Stable learning behavior: the parallel decline of training and validation loss curves
indicates consistent optimization and reduced overfitting on the region-specific dataset.

Training line graph of the fine-tuned model
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Figure 4 Training and validation curves of the fine-tuned AlexNet model on the Uzbekistan
dataset.

These patterns confirm that fine-tuning significantly improves the model’s adaptability
and performance on regional data, validating the use of transfer learning for underrepre-
sented geographies [8].

6 Results

6.1 Initial Evaluation on Uzbekistan Dataset

To assess the baseline generalization capability of the model, we evaluated the original
AlexNet architecture trained exclusively on the global Zenodo dataset (see Section 12)
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against the Uzbekistan specific test set. This test was designed to simulate a cross-domain
generalization scenario, where the model encounters data from an unseen geographic and
architectural context.

As expected, the model’s performance degraded significantly. The evaluation yielded
low accuracy and weak class-level performance metrics, as shown in Table 1. These
results confirm the presence of a domain shift [9]—differences in rooftop morphology,
image resolution, and environmental features between the global training data and local
Uzbekistan images—leading to model misclassification and overgeneralization.

Table 1 Baseline evaluation performance on Uzbekistan test set

Metric Value
Accuracy | 46.80%
Precision | 40.05%
Recall 46.80%
Fl-score | 43.11%

6.2 Fine-tuning Performance

To address the above limitations, the model was fine-tuned using the Uzbekistan train-
ing set, following the strategy outlined in Section 12. During fine-tuning, the convolutional
base was frozen, while the classifier layers were retrained with a reduced learning rate to
capture region-specific features.

After 25 epochs, the model achieved the following performance on the held-out Uzbek-
istan test set:

Table 2 Fine-tuned model performance on Uzbekistan test set

Metric Value
Accuracy | 70.21%
Precision | 73.87%
Recall 70.21%
Fl-score | 71.68%

The results demonstrate a dramatic improvement in all evaluation metrics, affirming
that transfer learning with regional adaptation is critical to improving prediction accuracy
for satellite imagery in underrepresented regions [6, 13].

6.3 Comparison of the Baseline and Fine-tuned Models

To quantify the impact of transfer learning, we conducted a side-by-side comparison of
the baseline model and the fine-tuned version. Both models were evaluated on the same
Uzbekistan test set. Performance metrics for each are summarized in Table 3.

Table 3 Comparison of baseline and fine-tuned models on Uzbekistan test set

Confusion matrices for visualizing class-specific prediction accuracy are shown in Fig-

ure 5.

Model Accuracy | Precision | Recall | F1-score
Baseline 46.80 40.05 46.80 43.11
Fine-tuned 70.21 73.87 70.21 71.68
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Figure 5 Confusion matrices of the baseline and fine-tuned models on the Uzbekistan test set.

The baseline model, trained solely on the global Zenodo dataset, achieved moderate
performance with an Fl-score of 43.11%. While it was relatively effective in recognizing
hipped roofs (65 correct predictions), it failed to generalize to flat and gable roofs, mis-
classifying nearly all of them as hipped. This reflects a substantial class imbalance in
predictions and a lack of adaptation to the local architectural patterns of Uzbekistan.

In contrast, the fine-tuned model, which was further trained on a region-specific
dataset of Uzbekistan rooftops, showed clear improvements across all evaluation metrics.
It achieved an Fl-score of 71.68%, with balanced performance across the three classes.
Particularly notable is the improvement in the gable category, where the model went from
zero correct predictions (baseline) to 19 correctly identified instances (fine-tuned).

The confusion matrices in Figure 5 highlight these differences:

— The baseline confusion matrix is dominated by misclassifications, especially for the
flat and gable classes, which are overwhelmingly predicted as hipped.

— The fine-tuned matrix exhibits strong diagonal dominance, indicating significantly
improved class-wise accuracy and a more reliable model for deployment in real-world
scenarios.

These findings reinforce the critical role of domain adaptation in computer vision for
remote sensing. Fine-tuning on geographically relevant data proves essential for achieving
robust and balanced performance, particularly in underrepresented regions such as Central
Asia [12].

7 Applications and Use Cases

The fine-tuned AlexNet model developed in this study has direct utility across a range
of real-world domains, particularly in geospatial intelligence, urban planning, and disaster
management. Its ability to accurately classify rooftop shapes using satellite imagery
enables scalable, automated extraction of structural information in contexts where manual
surveys are infeasible.

Key application areas include:

— Urban planning and infrastructure monitoring. Accurate mapping of rooftop
types aids city authorities in assessing residential density, building typology, and zon-
ing compliance. For instance, gabled and hipped roofs may correlate with older housing
stock, while flat roofs often appear in newer or industrial buildings. Automated clas-
sification can support infrastructure development and housing policy formulation [15].
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— Renewable energy deployment. Identifying flat rooftops is particularly valu-
able for solar panel placement and optimization of photovoltaic potential. Using the
model’s outputs, energy agencies or private firms can prioritize solar installations in
densely built-up zones without requiring costly site visits [16].

— Disaster response and resilience planning. Roof shapes are indicators of vul-
nerability to natural hazards. For example, hipped roofs generally perform better
in high-wind events than flat roofs. The model can also be used to compare pre-
and post-disaster satellite imagery, enabling rapid damage assessment and resource
allocation following earthquakes, floods, or cyclones [17, 18].

— Geospatial mapping and open-source cartography. Platforms such as Open-
StreetMap often lack rooftop attribute data in developing regions. This model can
assist contributors by generating automated roof annotations, enhancing the richness
of public geospatial datasets and supporting crowdsourced mapping efforts [18,19].

— Insurance and structural risk analysis. In the insurance industry, roof geometry
is a known risk factor in property underwriting. Flat roofs, for example, are more
prone to water pooling and structural stress. The proposed classification system can

be integrated into risk assessment pipelines to automate premium estimation and claim
validation [21,22].

By leveraging openly accessible data sources (Mapbox, OpenStreetMap) and lightweight
CNN architectures, this system demonstrates how Al and remote sensing can be combined
to create scalable and reproducible pipelines for urban analytics, particularly in under-
represented and low-resource regions.

8 Conclusion

This study presents a transfer learning-based approach for rooftop shape classification
using satellite imagery, with a specific emphasis on regional adaptation to the architec-
tural landscape of Uzbekistan. Starting from a pre-trained AlexNet model trained on a
globally distributed dataset, we fine-tuned the network using a custom-curated dataset de-
rived from OpenStreetMap and high-resolution Mapbox imagery. The results demonstrate
that fine-tuning significantly improved the model’s performance on previously unseen, ge-
ographically specific data, with accuracy rising from 46.80% to 70.21%, and substantial
gains in precision, recall, and F1-score.

These findings underscore the importance of domain adaptation in remote sensing
tasks. Models trained on global datasets often underperform in underrepresented regions
due to differences in architectural typology, data quality, and environmental context. By
leveraging open-source data and lightweight CNN architectures, our approach provides a
scalable solution for accurate rooftop classification in data-scarce environments.

Despite the strong performance, several limitations warrant further attention. The
manually curated Uzbekistan dataset remains limited in geographic and temporal scope,
and the resolution of Mapbox imagery restricts the capture of fine-grained architectural
details. The reliance on a relatively dated model architecture (AlexNet) also suggests
room for improvement through more advanced networks such as EfficientNet or Vision
Transformers. Additionally, the model operates purely on 2D imagery, omitting poten-
tially valuable 3D data such as elevation or slope.

Future work should consider expanding the dataset across multiple regions and ur-
ban contexts, integrating elevation models or LiDAR data, and employing more recent
deep learning architectures. Addressing label noise and incorporating semi-supervised or
crowdsourced labeling strategies could further enhance model robustness. Operational
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deployment will also require investigation into system latency, scalability, and integration
with GIS infrastructures.

In summary, this research demonstrates the feasibility and effectiveness of transfer

learning for rooftop classification in underrepresented regions, while highlighting technical
and practical pathways for enhancing generalizability and real-world applicability in future

work.
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TOHKAS HACTPOMKA ALEXNET JIJIs

K/ITACCUOPUKAIINN ®OPM KPbLIIII B Y3BEKNCTAHE:

I1oaxo/1 € UCI10JIbSOBAHUEM TPAHCP®PEPHOI'O
OBYYEHUA

Hndawes C.Y.
ysaidkarim@gmail.com

Hayuno-uccieoBaresibCKuit MHCTUTYT Pa3BUTUs MUMPOBLIX TEXHOJIOTUI U UCKYCCTBEHHOTO

WHTENIEKTA,

100125, ¥Y36ekucran, v. Tamkent, Mupzo-Vayrbekckutt p-ou, M-8 By3-2, m1. 17A.

B nanmoit pabore uccienyercs 3aiada Kaaccuduranuu hopM KPBIII ¢ HCITOJIb30BaAHU-
eM cBepTOYHbIX HefipoHHBIX cereil (CNN), ¢ 0cobbIM BHUMAHMEM K PErMOHATBHOM aIanTa-
AW ¢ TOMOIIBIO nepenoca obyuenus. [lepsonaganbaoe obyuerne apxurekTyphbl AlexNet
TPOBOAWTCS Ha OOIIEA0CTYynHOM Habope AaHHBIX Zenodo, coeprKalneM CIyTHUKOBBIE
n300paKeHus IJIOCKUX, JBYCKATHBIX U BaJbMOBbLIX Kpbiil. g ycTpaneHusi orpanude-
Hu#l 0600Iaroeii CrrocoOHOCTH B CIEMN(PUICCKAX reorpauIecKnX KOHTEKCTaX CO3TAH
TOJTb30BATELCKII HAOOD JAHHBIX KPBIT Y30eKucTana, noaydenubiit n3 OpenStreetMap
¥ TaitaoB BbICOKOrO paspertenns depe3 API Mapbox Static Images. Tounas wacrpoiika
Ha 3TOM Ha60pe JAHHDLIX ITOBLIMIACT TOYHOCTD K.)'[aCCI/ICbI/IKaLU/H/I TIJIOCKUX, IBYCKATHBIX 1
BaJIBMOBBIX KPBITI, TOATBEPK Aasd dPPEKTUBHOCTL TPAHCHEPHOTO 00y IeHNS B CMATIYCHNN
JIOMEHHOT'O CJIBUTA, BHI3BAHHOIO apPXUTEKTYPHBIMH U 9KOJOTHYECKUMU paziundusmu. VH-
Terpanus HHCTPYMEHTOB Te0IPOCTPAHCTBEHHOTO aHAJIN3a C OTKPBITHIM UCXOTHBIM KOJIOM
u TpaHCGEPHOro 00ydeHrs MPEeJOCTAB/ISIET BOCIIPOU3BOANMY OCHOBY JIJIsi YCTPAHEHUSI
reorpaduIecKoil TPEAB3ATOCTH B 331a49ax Kiaaccudukanmu hopM KPBII, aJalTHPYEMYIO
JJIA APYTUX HEAOCTATOYHO TTPEACTABJIECHHBIX PETMOHOB.

Korouessbie caoBa: knaccudpukaimg (GOPM KPBIIT, CBEPTOUHBIE HEHPOHHBIE CETH, TPAHC-
depuoe obyuenne, AlexNet, CIIyTHUKOBLIE CHUMKH.
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Huruposanne: Oadawes C.Y. Toukas nacrpoiika AlexNet s knaccudukanuu dopm
KpBbIII B Y36eKucTane: Mojxoz, ¢ ucnosub3osanueM Tpancdeproro obyuenus // TIpobiembr
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