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1 Introduction

The history of the spline functions goes back to the work of draftsmen, who often had to
draw a smoothly turning curve between points on a drawing [1]. This process is called
wrapping, and it can be accomplished with a number of special devices, such as a French
curve, made of plastic and presenting the draftsmen with a choice of curves of varying
curvature. Long wooden strips were also used, which were passed through control points
by means of weights placed on the draftsman’s table and attached to the strips. The
weights were called ducks, and the wooden strips were called splines as early as 1891.
The elasticity of the wooden strips allowed them to bend only slightly as they passed
through the given points. In effect, the wood solved a differential equation and minimized
the strain energy. The latter, as is known, is a simple function of curvature.

The mathematical theory of these curves owes much to early researchers especially Isaac
Schoenberg in the 1940s and 1950s [2|. His original work involved numerical procedures
for solving differential equations, where a sufficiently fundamental and detailed study was
conducted, however, splines without the use of the term itself were studied earlier, for
example V. Quade and L. Collatz studied periodic splines in 1938 (see historical notes in
the monograph by L. Schumeiker [3, p. 10]).However, the intensive study of splines began
only in the early 1960s. A rather simple work by J. Holliday |4], in by which he noted
that piecewise cubic functions of class C? minimize the functional
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close to the deformation energy integral describing the profile of an elastic rod fixed
in some set of points. Such functions immediately became the basis of the description
apparatus and approximations of curves and surfaces, in which the urgent need arose by
that time due to the emergence of the first computers. The much broader applications
of splines to the areas of data fitting and computer-aided graphic design became evident
with the widespread availability of computers.
The theory of splines was first systematically presented by Ahlberg, Nilson, Uolsh in [5].
In this work, we construct an eighth order algebraic-hyperbolic natural spline, which is a
type of generalized spline. Now, we give the definition of generalized splines based on the
book [5]. Let L be a linear differential operator
mn n—1

L= an% + an_l% + ...+ ap(x),
where, a;(z) € CV(a,b), j =0,1,....n and a,(z) # 0, € [a,b]. The operator L* is the
conjugate to L and has the form:

n—1

L= () @)} () ()} 4+ aofa)

dgn—1

Definition 1.1. Let a mesh A : a = 2y < 27 < ... < x, = b be given in [a,b]. A

generalized spline with defect & (0 < k& < n) on the mesh A is a function Sa(x) from the
class K?"%)(q, b) and satisfying the following differential equation

L*LSA(SU) = 0,

on each interval (z;_q,7;), (i = 1,2,...,n). We say that, Sx(x) spline has an order 2m,
when we need to specify the order of the operator L*L defining Sa(x). Where, K25
is a class of functions defined on the interval [a,b] that have an absolutely continuous
(2n —k — 1)t derivative and the (2n — k)" derivative belonging to the space Lo(a,b). The
defect is usually taken to be 1, and the (2n — 1) order derivative of the spline Sa(x) has
a discontinuity on the mesh A, and the spline consists of smoothly connected piecewise
functions.

We present some of the main results on splines. In [6], a greedy algorithm for exponential-
polynomial splines is given. 7], is proposed an integro spline quasi-interpolant based on
second order Uniform Algebraic Hyperbolic functions. The main tool of this approach is
Marsden’s identity. The advantage of this method is that it does not need any additional
data and does not require the solution of any system of equations. This construction can
be extended to derive fourth order approximating splines, but the expressions provided
for the coefficients of the quasi-interpolants are very complex. The construction of certain
types of L splines, which are also used in many practical areas, is given in [8], [9], [10],
[11], because, an important task in the theory of L- splines is to construct them. In this
work, we will consider the properties of eighth-order algebraic-hyperbolic natural tension
spline and construct it. This work consists of the following sections: in the second section,
we give a definition of eighth-order algebraic-hyperbolic natural tension spline, then in
the third section, the properties of the minimum norm for the spline are studied, in the
next section, we will find the form of the spline and obtain a system of equations for its
coefficients, sections 5, 6, and 7 consist of an algorithm for solving a system of equations,
calculating the coefficients of the interpolation spline, and a conclusion, respectively.

2 Eighth order algebraic-hyperbolic tension natural spline

Now, we give a definition of the eighth order algebraic-hyperbolic spline by following the
definition given [5].
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Let L, be a linear operator given by the formula

d* d?
Li= 2 2% 1
Y7 Aot v dx? (1)

Then L} the operator conjugate to L4 has the form:

L= — v —. (2)

Definition 2.1. Eighth order algebraic-hyperbolic tension spline of defect 1 relative to
the mesh: a = 29 < 1 < ... <y = b on the segment [a,b] is the function Sa(x) from
the class K7 (a,b) satisfying the differential equation

on each open interval (x;_1,x;), i =1,2,..., N.
Class K4, is a factorized Hilbert space where the inner product is introduced as follows:

b
< f9>,= [ () =250 @) (00 ) - 09 )i (4
the norm is defined using the inner product as follows:

k., = V< f > (5)

for convenience, we take the interval [0, 1] instead of [a,b] and 0 = 2y < 21 < ... < zy = L.
Let us be given the corresponding values Y : yq, 41, ..., yn at thenodes zg < xy < ... < xy.
We construct a spline that satisfies the following interpolation condition:

SA(Y, l’j) =Yy, ] = O, 1, ,N

In the next section, we consider that under what conditions the spline SA(Y, ;) gives a
minimum to the norm in the space Ky,

3 The first integral identity for the eighth order algebraic
hyperbolic spline

Now, we consider the following problem in the space K,,.
Problem 1. Find the function f(z) € Ky, which gives minimum to the semi-norm
(5) and satisfies the interpolation condition

f(zj) =y;, 7=0,1,..,N, x; € [0,1].

Now we will show that among the functions f(x), an algebraic hyperbolic spline of the
eighth order minimizes the norm in the space Ky,

Theorem 3.1. If the function f(x) belongs to the space K4, then the spline Sa(f;z)
interpolates it on the mesh 0 = 2y < 1 < ... < zy = 1 and one of the following conditions
fulfilled:

1. at the end points of the mesh A for the eighth order algebraic-hyperbolic tension
spline SA(f,z) the equalities (LySa(f;1))* = (L4Sa(f;0)* = 0, @ = 0,1,2 are
valid;
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2. The function f(x) and eighth order algebraic-hyperbolic tension spline Sa ( f, z) satisfy
the boundary conditions f®*)(0) = ng)(f, 0), f®)(1) = SXC)(f, 1) k=1,2,3.

3. The function f(x) and eighth order algebraic-hyperbolic tension spline Sa(f,z) are
periodic;

Then the integral identity holds

/0 (Lf(2)Y2dz = / (LSa(f:2)}de + / (Llf(2) - Sa(fio)P2dz. (6)

It should be noted that a eighth order algebraic-hyperbolic tension spline is called:

1. Sa(f,z) is called natural interpolation spline, when condition a) satisfied.
2. SA(f,x) is called clamped interpolation spline, when condition b) satisfied.
3. SA(f,x) is called periodic interpolation spline, when condition c¢) satisfied.

Prove. Let u(x) and v(z) be functions from the Hilbert space K, ,. Integrating by parts
the indefinite integral of the product Lyu(z)v(z) we obtain the following identity.

3 J

[ Baayot@yds = 3D S (D arer)e@)® + [ulo)Liv@de. ()

7=0 k=0

where ay are the coefficients of the operator L, and in our case, they are
ar=1, a3 =0, as = —v%,a; =0, ay = 0. (8)

We differentiate both sides of equation (7) and then we put u(x) = f(x) — Sa(f, )
and v(xz) = LySA(f,x) on it. Then we obtain the following equality by integrating the
resulting equality over [x;_1,x;], i = 1,2,..., N interval

/ La{f(x) — Sa(f,2)} LaSa(f, x)dx =

T

= Z[f(l“)—sa( )Y (D) ag (@) LaSa(f )} +

LTi—1

+/m {f () = Salf, @)} LiLaSa(f, 2)dz

From here, taking into account equation (3), we come to the following

/mi Ly{f(z) — Sa(f,2)}LsSa(z)dz =

i—1

3 T

(Z[f( ) = Salf, x)]® ])Z ) {asjir()LaSalf, )} )| . (9)

Next we consider the following identity.

/O (LAl (x) = Sa(f. 2)]}2de =
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:/0 {L4f(37)}2d33_/0 {L4SA(f,x)}2dx—2/0 Lylf(x) = Sa(f, )| LaSa(f, v)dx

From here, taking into account (9), we obtain the following.

/0 (Lalf (@) — Sa(f.2)|}dz = / {Laf(x)}2dr — / (LaSa(fo2) P

~23" (O [f(@) - Sa(f, ) ”Z V{01 4(r) LaSa(f,2)}) (10)

i=1 ;=0

Ti—1

Now, we study the conditions on the function f(x) and on the generalized spline Sa(f, x)
that the last sum becomes zero in (10).
Let us consider the last sum in identity (10) and denote it as follows:

J

A(f,58) = 37 (@) = Salf o) 3 (<D fausin(w) LaSalf, 2)})

i=1  j=0 k=0

for A(f, Sa), expanding the integral sum, we have

N

A(f,58) = ) A" (@) = SK(f.0)] - aa(@) LaSa(f. )},

i—1
=1

+ 31" (@) — S, 0) - (asle) LaSa(F,2) — (aa() LS. 0)) D}, +

_|_

+

Ti—1

+Z {[f'(z) = SA(f,2)] - (az(x) LaSa(f, x) — (asLaSa(f,x)) + (asLaSa(f, x))")}5!

+Z — Sa(f,2)] - (a1(2) LaSa(f, ) — (agLaSa(f, )+
+ (a3 LaSa(f, 7))" — (aaLaSa(f, 2))") 33

(11)
From Theorem 3.1, it is known that the spline Sa(f, x) interpolates the function f(x)
on the mesh A in [0, 1], that is

SA(f, ZE]') = f(xj)a ] - O, ]., ,N

Therefore, the last sum in the expression (11) becomes zero and taking into account
expression (8), we obtain the following expression

+

Ti—1

A1, 88) = 3 A1) = SK(f.2)) - LiSa ()

+ (12)

Ti—1

+Z{[f (z) — Sx(x)] - (—LaSA(f, )}

+> Al (x) = SA(f.2)] - (—v*LaSalf x) + LaSK(f, )}

=1

i1’
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When we expand the sums in (12), leaving only the first and last terms and shortening
the remaining middle terms, we get the following expression

A(f, Sa) = Z {[f"(xn) — SX(xn)] - LaSa(f, o) HI | —
—~ Z {[f" (o) — SK(x0)] - LaSa(f,zo) o, +
+3> A" (an) = SK(zn)] - (~LaSA(fan) e —
i=1 (13)
=D A" (wo) = SA(wo)] - (~LaSa(F o)}, +
+ Z {{f'(ax) = Sa(an)] - (=0 LaSa(f,an) + LaSK(foan))}, | —
=D AL/ (wo) = Sa(f, o)) - (=0 LaSa(f,20) + LaSK(F o)},

For expression (13) to be equal to zero, it is sufficient to satisfy one of the conditions
of Theorem 3.1. This result is based on the general result given in [5] and (6) integral
identity is called as the first integral identity. Since, A(f, Sa) = 0, the first integral
identity holds. Consequently, the function minimizing the norm in the space Ky, is the
spline Sa(f,x) satisfying one of the conditions of Theorem 3.1.

In this work, we construct a natural spline satisfying only a) condition from the conditions
of Theorem 3.1.

4 System of equations for the coefficients of the spline

From now on, instead of the term eighth-order algebraic hyperbolic natural tension
spline, we use the term of natural spline. We know that, the kernel of the operator
L, consists of sinhvz,coshvz,x, 1 functions and the kernel of the operator L;L, con-
sists of sinh vz, cosh va, vz sinh v,vx cosh v,23, 22, z, 1 functions. Then the natural spline
Sa(f,x) is uniquely determined by the following conditions.

1. Sa(f,z) consists of a linear combinations of functions sinhwvz, coshwvz, vz sinho,
vrcoshvx, 23, 2%, 2, 1in each (z;,7;41), i =0,1,..., N — 1 interval

2. Sa(f,z) is a linear combination of sinhwvz,coshvz,x, 1 in intervals (—oo,0) and
(1,00,)

3. Sa(f, ) satisfies the following continuity and natural spline conditions

Sgl)(fwrl_()) :S(Aa)(f7$1+0), (1:0,1,2,3,4,5,6, 1= 1727”'7N_ 17
(LaSa(f,00)" = (LaSa(f,1)™ =0, k=0,1,2
4. The function Sa(f,z) satisfies interpolation conditions
SA(f, l’z) = Y, 1= 0, 1, ,N

Using the above, we present the following theorem about the form of the natural spline,
which is one of the solutions to Problem 1.
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Theorem 4.1. The natural spline, minimizing the norm in the space K,,, has the
following form:

N
Salf,z) = Z CiGy(x — x;) + dy sinh(vz) + dy cosh(vz) + po + prz, (14)
=0

where C;, i = 0,1,...,N,dy,ds, po, p1 — are coefficients of the spline (14) , G(x) is the
fundamental solution of the operator L;L, and satisfies equation L;L,G4(x) = §(x) and
has the following form

Gu(r) = 29 (15 cosh(va) — 5sinh(vr) + 22 = _(2];;)(—0 33! -)

(15)

here, 0(x)— is the Dirac delta-function.
The Coeflicients of the natural spline satisfies the following system of linear equations

N
Z CiGy(x; — x;) + dy sinh(vx;) + dy cosh(ve;) + po +prz =vy;, j =0,1,...,N, (16)
=0

N
Z C;sinh(vz;) = 0, (17)
i=0
N
Z C; cosh(vz;) = 0, (18)
=0

N
=0

> Ci=o. (20)

It is known that (see, for example [17]) the solution Sa(f,x) of the form (14) exists only
for N > 3.

Proof. G4(z — x,) has until sixth order continuity and its seventh order derivative has
a discontinuity of the first type at the point x., and the discontinuity is equal to G4(x —
— 1) — G4(z — x7) = 1. Suppose that the function p,(v) overlaps with Sa(f, ) in the
interval (2., 2,41) , i.e., py(2) == py_1(x) + C,G4(z — z), = € (2, 2441), Where C, is the
jump of the function SA(f,z) at z:

C, = SO (f,at) = SO(f,22).

Then the spline SA(f, z) can be written in the following form

Sa(f,z) =Y C,Gu(w — ) +pa(z), (21)

where,
p—1(x) = dy sinh(vz) + dy cosh(vz) + po + p1. (22)



74 Abdullaeva G.Sh.

We obtain equation (16) from (21), (22) and the condition (IV).
Furthermore, the function Sa(f,x) satisfies the condition (II) and therefore it leads to
the following conditions for C.,

N

N N N
Z C, sinh(vz,) =0, Z C, cosh(ve,) =0, Z Cyx=0, Z C, =0. (23)
~=0 v=0 v=0 v=0

Conditions (23) are said orthogonality conditions and we obtain system of equations (16)-
(20). Theorem 4.1 is proved.

A system of equations of the form (16)-(20) is called discrete systems of the Winer-Hopf
[18]. Such systems are ill-conditioned and standard methods require a large amount of
computation to solve them. Therefore S.L.Sobolev proposed a special method for solving
such systems. This method allows to obtain an analytical solution of such systems. This
method is based on constructing a discrete analogue of the differential operator L;L,. In
the next section we give an algorithm for solving a system of (16)-(20) equations.

5 Algorithm for solving a system of equations

In this section, we give an algorithm for finding the coefficients of the spline (14). We
assume that the nodes zz are equally spaced, i.e., x3 = hf5, h=1/N, N = 1,2, .... Here
we use a similar method proposed by S.L.Sobolev [14,15] for finding the coefficients of
optimal quadrature formulas. We use mainly the concept of discrete argument functions
and operations on them. The theory of discrete argument functions is given, for example,
in [15,16].

The convolution of two discrete argument functions is defined as.

p(hB) * ¥(hB) = [p(hB), Y(hB —hy)] = D @(hy) - (kB — hy). (24)

Suppose that Cs = 0 when < 0 and § > N. Using convolution, we rewrite equalities
(16)-(20) as follows:

G4(hp) * Cg + dy sinh(vhf3) + da cosh(vhf) + po + p1hf = f(RB), f=0,1,..N, (25)

N
> Cysinh(vhf3) =0, (26)
B=0
N
> Cycosh(vhf) =0, (27)
B=0
N
> Cshp =0, (28)
B=0

N
> . Cs=0, (29)
=0

where G4(hf) is a function of discrete argument corresponding to the function G4(z) .
Thus, we have the following problem.

Problem 2. Find the coefficients Cs, 5 = 0,1,..., N and the constants di,ds, po, p1
which satisfy the system (25)-(29).
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Further we investigate Problem 2 which is equivalent to Problem 1. Namely, instead of
Cs we introduce the following functions

U4(hﬂ) = G4<hﬂ) * Cg, (30)
ug(hB) = va(hB) + dy sinh(vhf) + do cosh(vhB) 4+ po + p1hp. (31)

In such a statement it is necessary to express the coefficients Cz by the function us(hf).
For this we have to construct such an operator D4(hf) which satisfies the equality

Dy(hB) * Ga(hf) = 6(h3),

where 6(hf) = { ?’ gig

The construction of the discrete analogue Dy(hf3) of the differential operator

is the discrete delta-function.

— 20255 + 01 s given in [12] .
Followmg [12] we have
Theorem 5.1 The discrete analogue of the differential operator o5 — 21}2 d° i v 2 has
the form
(3
ZAk)\klm_la |B| 2 27
k=1
207 >
Pe 1
3
Ay,
C — =0
4 + Z >\k ) |ﬁ| )
3 k=1
where

= hw cosh (hv) — 5sinh (vh) + 2372 _ 521 ]‘;),,
ps = —20hv cosh(hv) + 20sinh(hv) 4+ 5sinh(2hv) — 10hv — cosh (hv))(hv)? + 5(hv)?,
Cy = —(4+ 4cosh (vh)) —

A (1=X)*(A2+1—2) cosh h)?pg
k= Ak s’ (Ar) ’

(33)
here, A\, k =1,2,3 are zeros of the following polynomial

Ps(A\) = (1 — N)*[(vh cosh (vh) — 5sinh(vh))A? + [5sinh(2vh) — 2vh| A+
. 2 25 (8= )R 1By
+(vh cosh (vh) — 5sinh (vh)]) + 2(A° + 1 — 2 cosh (vh)) k=11 :

k=1

and |/\k:| < 1,

where Fy;_o is Euler-Frobenius polynomial.

Theorem 5.2 Discrete analogue Dy(hf) of the differential operator dd 21}2 d 5 + 4d$4
satisfies the following equalities:

1) Dy(hpB) * sinh (vhB) = 0,
( )=0

2) Dy(hp) x cosh (vhf3 ,

3) Dy(hp) * (vhp) sinh (vhB) = 0,
4) Dy(hpB) * (vhp) cosh (vhf) = 0,
5) Da(hB3) * Ga(hB) = 6(hp),

6) Dy(hf) * (hf) =0,
T)Dy(hB)*1=0.
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This properties were proved in [14]|. Then, taking into account (32) and Theorem 5.2
for optimal coefficients we have

Cs = Dy(hB) * us(hB). (34)

Thus, if we find the function u,(h3) then the coeflicients C can be obtained from equality
(34). In order to calculate the convolution (34) we need a representation of the function
uy(hB) for all integer values of 5. From equality (25) we get that us(hf) = f(hS) when
hi3 € [0,1]. Now we need to find a representation of the function uy(hf) when § < 0 and
8> N.

Since Cg = 0 when hf ¢ [0,1] then Cg = Dy(hS) * ug(h3) = 0. We calculate now the
convolution vy(hf) = G4(hB) * Cs when < 0 and > N.

Supposing 8 < 0 and taking into account equalities (15), (26)-(29) we have

- i C.Ga(hB — hry) = Z c, on hﬁ M) £ (6hB — vhy) cosh(vhf — vho)—

y=—00 y=—00

(3 — k)(vhB — vhy)*

2
—5sinh(vhf — vhy)+2

} ==
— (2k —1)!
N N
= cosh vhﬁ Z (vh7y) cosh(vhy) — sinh vhﬁ Z (vhy) sinh(vhy)—
~=0 =0
1 al 1
——(vhB)>_ C\(vhy)* + o > C(vhy)®.
v=0 Y=o
Denoting
T N
D, = T Z C, (vhy)sinh(vhy), Dy = Z (vh7y) cosh(vhy),
=0 7=0
1 1 &
QO 12,07 Z C’Y(/U)g(h'r}OgJ Ql - m Z C ( ) (h,)/)
v=0 v=0

we get for § <0
vg(hpB) = — Dy sinh(vhf) + Dy cosh(vh() + Qo — Q1hf5.
And for 6 > N
vg(hf) = +Dy sinh(vhB) — Dy cosh(vh3) — Qo + Q1hp.
Now, setting
di =dy — Dy, dy =dy+ D3, py =po+Qo, pr =p1— @,

df =dy+ Dy, di =dy — Ds, p =po— Qo, pi = p1 + Q1,

We formulate the following problem:
Problem 3 Find the solution of the equation

Dy(hp)  us(hB) = 0, hf3 ¢ [0,1]. (35)
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In the form:

dy sinh(vhf) 4+ dy cosh(vhf) + py + pyhB, B <0,
ug(hp) = ¢ f(hB), 0< BN, (36)
dy sinh(vhf) + dy cosh(vhfB) + pg + pThB, B =

where dy, dy, py, py, di, di, pg, pi are unknowns.
It is clear that

1 1
d = 5(df +d), i =12, pi = S +p]), i =0, L, (37)

These unknowns d;, dy, py, pi, di, dy, ps, p{ can be found from equation (35),
using the function Dy(hf). Then the explicit from of the function u,(h5) and coefficients
Cs, dy, d2, po,p1 can be found. Thus, Problem 3 and respectively Problems 2 and 1 can
be solved.

In the next section we realize this algorithm for computing the coefficients Cp, 8 =
=0,1,..,N, dy, da, po, p1 of the interpolation spline (14).

6 Computing of the coefficients of the interpolation spline

In this section using the algorithm from the previous section we obtain explicit for-
mulae for coefficients of natural spline (14) which is the solution of Problem 1.
The following holds.
Theorem 6.1 Coefficients of natural spline (14) which minimizes the semi norm in that
space K, with equally spaced nodes in the space K5(Ps) have the following form:

Co :%{ dy sinh(vh) 4 dj cosh(vh) + py — pr h + Caf(0) + f(h)+
6

3 N
Ay N
+; )\—k[Mk + ; A F(hy) 4+ AN NG,

0 = 22 {105 = 1)+ CHAH) + FH(5 + 1)+

3 N
A - _
Y M+ Y N () NN A= 120N - 1
k=1 "F 7=0
2 7
Oy = pi{df sinh(v(h + 1)) + df cosh(v(h + 1)) + pg + pt - (h+1) + f(1 — h)+
6
3 N
Ay, _
+Cf (1) + > 5 M+ D O T f(hy) + N},
k=1 v=0
1
d; = é(dj +dy), i=12p = é(pz+ +p;),1=0,1,
where
_ Ak sinh(vh) _ Xg(cosh(vh) — A\g)
1+ Ag2 — 2)j cosh(vh) 1+ Ag2 — 2Xj cosh(vh)
Ak N

P 1= iy (1= Ap)? (38)

Ak (sinh(v(h + 1)) — Ax sinhv) I+ A (cosh(v(h + 1)) — g coshv)

Ny, =df 5
1+ Ag2 — 2)j cosh(vh) 1+ Ag2 — 2); cosh(vh)
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Ak
(1—X\p)?’

and pg, Ay, Cy, A\, are given in (33) and dy, dy, py, p1, di, d3, p¢, pi are defined by
(40), (44).

Proof. First we find the expression for d; and dj. When 8 = 0 and 8 = N, from
(36) we get

Ak
+pg +pi) T ot hpf

(39)

f(1) = d{ sinh(v) — py —p;

d; = f(O) —p57 d;r = COSh(’U)

(40)

Now we find other four unknowns d;, py, py, di, pg, p which can be found from (35)
when = —1, =2, =3, N + 1, N + 2, N + 3. Taking into account (36) and from (35) we
have:

Z Dy(hp + hy)(—dy sinh(vhvy) + dy cosh(vhy) +py — py - (hy))+
+ > Da(h — W) f(hy) + Y Da(h(N +~ = B))(df sinh(v(hy + 1))+
+dy cosh(v(hy + 1)) + p{ + pf (hy +1))) = 0.

Now, we use (40) and for § = —1, =2, =3, N + 1, N + 2, N + 3 we get the following
system of linear equations for dy, py,py, di, pd, pi

—dy Y Dy(hy + h3)sinh(vhy) + py Y Dy(hy + hB)(1 — cosh(vhy))—

=1 =1

—hpy Y Da(hy +hp) -+ 1hv ; Dy(h (y+ N — ) sinh(vhy)+

cos
=1

+p§ZD4(h(7 + N —5)) (1 _ cosh (v(hy + 1))) "

cosh v

cosh(v(hy + 1))

+p7 > Da(h(y+ N = B))(hy + 1 — )=

coshv
== Da(hB = hy) f(hy) = f(0) Y Da(hfB + hy) cosh(vhy)—
—%ZD;;(%LW#—N—ﬂ))cosh(v(h’y—i— 1)). (41)

Now, we consider the cases § = —1, —2, —3. In (41) , we replace 8 with —/ and write it
in the following form:

_dIBdfvﬁ +paBp875 +pIBp;7f3 + d;rBd;rﬁ +p(J)eraL75 +prpf,ﬁ = T,B? 6 o 1’ 2, 3’ (42)
where .
2
By 5= ———[sinh(vh(8 — 1)) + Cysinh (vhf) + sinh (vh(8 + 1))+
’ Deé
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3 %)
Ar 8
+ Z )\—k Z AT smh(vh'y)} ,
k=1 y=1
207
By s = e “—[(1 = cosh(vh(B — 1))) + Ca(1 — cosh (vhf3)) + 1 — cosh (vh(B + 1))+
3 A o) ‘ ‘
k B~
+ Z % Z An (1 = cosh(vhA],
k=1 y=1
207 ~ Ao 1)
B, 5="—[28+Cif+> > N
! DPe —1 )‘k o

3

B — 207 Z A\ NP sinh(vh)
8~ pe coshv —~ 1+ A2 — 2\ cosh(vh)’
B.. - 207 ZA AN 1 cosh(v(h+1)) — Ay coshv )
Ps-A " ps coshu p Rk 1— X, cosho(l+ A2 — 2\, cosh(vh))”’
0T 1 1 cosh(v(h + 1)) — A\ coshv
Bi,=—-—3Y AN -
I8 = pg cosho ; #A (=)  T—X  cosho(l + A2 — 2)\; cosh(vh))”’

207

Ty = _p_ f(0) - (cosh(vh(B — 1)) + Cycosh(vhf) + cosh(vh(f + 1))+
6

+Z " Zcosh vhy) +ZAkZ)\7f hy)+

y=1

f() 23:14 )\NJchosh(v(h + 1)) — \g coshwv

cosh(v) m 1+ A7 — 2X; cosh(vh)

k=1
Further, in (42), we consider the cases N +1, N +2, N + 3. From (42) by substituting
S with N + (3 and using (32), we obtain the following system of 3 linear equations.

—d Ad ﬁ“_pOAfﬁ‘FplAfﬂ‘i‘d Ad+ﬁ+p0A +5+p1A +B—Sﬂ, /6:1,2,3 (43)

Where
0T G~ AN sinh(vh)
Ad—B:__Z1 A2 — 2\, cosh(vh)’
b 2 15 X2 = 2 cosh(vh)
1 cosh(vh) — A
A B A Y N+B
Po B PG ; ROk (1 —X\¢ cosh v(1+ A — 2\ COSh(Uh))>7
A . _2’U7h 3 Ak)\kN+B
5= — 3
P pe = (1—A)
Ay .= 207 [s' h(vh(B — 1)) + Cysinh (vh3) + sinh (vh(B + 1))+
ap = 7o cosh(0) inh(v 1sinh (v inh (v

3
+ kz_; " Z )\‘6 4 smh(vhv)}

y=1
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21}

A 1<
Z b Z VAL Niye " (Z Z AP cosh(v(hA + 1))+
k=1 k=1 y=1

+cosh(v(h(8 — 1) + 1)) + cosh(v(hf 4+ 1)) 4+ cosh(v(h(8 + 1) + 1))) |,

207 A A
Ao =0 [h Z ’“ZA'B 7'+26+C46}+Z ’“ZW oo

1
~ coshv

Z Z /\‘6 " cosh(v(hA + 1)) + cosh(v(h(B — 1) + 1))+

+ cosh(v(hf + 1)) + cosh(v(h(B8+ 1)+ 1)) |,

g 207 #(0) 23:14 \N+8 cosh(vh) — +23: Ay i/\]\prg T ()
A De p k% 1+)\2—2)\kcosh vh) — Ak (h7))

+COJ;S(>U> - (cosh(v(h(B — 1) + 1)) + Cy cosh(v(hf + 1))+

+cosh(v(h(B+ 1)+ —1—2 Zcosh (hy+1)))|-

Since |Ax| < 1, k = 1,2, the series in the previous system of equations are convergent.
(42) and (43) together, give a system of 6 equations with 6 unknowns,

Bi1 By;a Byi B el B, o szu 1 dr T,
Bara Bypz2 Bpro de Bp0+72 Bpfz Do T
Bdf?) Bp673 Bpf?’ BdTS BpOJr,S B pl_ _ T3 (44)
Ag-1 Apsa Apra Adl+1 Apar’l Ap;rl dy Ay
Adra Aprp Apra Agry Apro Ayt D SJ: A
Adrs Apsz Aprs Agrs Apes Ap1+3 P1 As.

and di, py, pi,di,ps,py, have a single solution, and we find these solutions using
Cramer’s method.
We obtain dy, dy, dy, df, df, df by combining (40) and (44). Then we obtain
dy, dy,po, p1 by using (37).

Now, We calculate the coefficients Cj, 5 =0, 1,2..., N. Taking into account (32) from
(34) for Cs we get

N
Cjs = Dy(hB) * us(hB) = ZD4 hB = hy)us(hy) = > Da(hB = hy) f(hy)+
v=0

y=1

+ Z Dy(hp + h7)< — dy sinh(vhy) + d5 cosh(vhy) +p, — py - (hv))—f—

=1
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+ i Dy(h(N+~v—=1)) (dl+ sinh(v(hy+1))4dy cosh(v(hy+1))+pd +pi (hy+ 1)). (45)

From which, using (34) and taking into account notations (38), (39), when =
=0,1,..., N, for Cs we obtain the expression given in Theorem 6.1

7 Conclusion

In this work, we constructed an eighth order algebraic-hyperbolic tension natural
spline. To solve this problem, we used the Sobolev method and obtain a spline function
for the approximate calculation of the unknown function. We first presented the interpo-
lation spline function under which conditions gives a minimum to the norm in a certain
Hilbert space. To find the coefficients of this spline, we created a system of equations
based on certain conditions. We used Sobolev method and gave the algorithm to solve
equations system. When we found the coefficients of the eighth order algebraic-hyperbolic
interpolation natural spline, we obtain the exact expression of this spline.
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IIOCTPOEHUNE .
AJITEBPANYECKU-TUIIEPBOJINYECKOI'O CIIJIAVNHA
ECTECTBEHHOI'O HATA>KEHU A BOCBMOI'O ITOPAJIKA

Ab60dyanaesa I'.III.
gulruxshukurillayevna@gmail.com
Nucturyr maremarnkn nvenn B.M. Pomanosckoro AH PV3,
100174, Y3bekucran, Tamkent, yia. YHauBepcurerckas, 9.

B crarbe obocHOBBEIBaETCS TO, UTO aarebpandecKu-TUNEpOOJTUIECKUil CIIaliH BOCH-
MOTO TOPSIKA MUHUMA3UPYET HOPMY B TMJIBOEPTOBOM TTPOCTPAHCTBE. 3aTeM, TIPUMEHSS
meto CobosteBa, OCHOBAHHBIN Ha TTOCTPOSHWH JAUCKPETHOTO aHagoTa A depeHtinaib-
HOTO omeparopa, crpoutcd dyHKnug ciuiaiina. Heunspecrubie koddduimenTsl ciiaina
BBIYHUCJIAIOTCS C YIETOM 33JIAHHBIX YCJIOBUI MIAJKOCTH U MPAHUYHBIX yCJI0Buil. B pesyiib-
TaTe MOCTPOEHHBIH CITaiiH 006/1a/1a€T BHICOKON CTEITEHBIO MVIAIKOCTH, TIOBBINIACT TOTHOCTD
WHTEPIIOJIATINNT 1 TOIHO BOCIIPOU3BOIUT I‘I/IHep6O.HI/ILIeCKI/Ie beHKI_H/H/I7 JIMHEeHHbIe 1TOJIMHO-
MBI 1 KOHCTAHTBHI. HOﬂyquHbIe pe3yabTaThl CBUAECTECJIBCTBYIOT O BBICOKOM 3(1)(1)QKTI/IBHO—
CTH TIO/IXO0/Ta, [T 33,1849, TPeOyIONNX I IKOM WHTEPIOIAINA U TOTHOTO MOASTUPOBAHUST
duznyaeckux mnpoieccos. Kpome T0ro, UCIojib30BaHNE MAPAMETPOB HATSKEHUs TT03BOJIsI-
€T TOYHO PEeryJIUpPOBaTh KECTKOCTh WU IMOKOCTD CILIaiiHa.

KmroueBsbie cioBa: ['nin6epToOBO TPOCTPAHCTBO, 000DIIEHHBII CIIIalH, aaredpaniecKu-

runepboMIecKuii CIIaiiH, CBEPTKA, IUCKPETHBIN aHAJIOT.

Huruposanue: Ab6dyanaesa I 111 TlocTpoenne anrebpaniecKu-runepboInIecKoro Crati-
Ha eCTeCTBEHHOIO HATSIXKEHWsI BOCbMOTO nopsizika // TIpofiaembl BEIMUCINTENLHOT U T1pH-

K1 qHOM Maremarukn. — 2025. — Ne3(67). — C.67-82.
DOI: https://doi.org/10.71310/pcam.3 _67.2025.06.
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