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This paper proposes a discrete model of the interaction between two airborne viruses,
based on an operator acting in a four-dimensional simplex. The model describes the
progression of an epidemic in a closed population, divided into five compartments: sus-
ceptible individuals, individuals in the latent stage of the first virus, those infected with
the first virus, those infected with the second virus, and individuals who have recovered
from the first virus. The mathematical structure of the model captures complex tran-
sitions between states and interactions between strains, including cases of co-infection.
Special attention is given to the analysis of the sets of initial and final states of the
disease, defined by systems of inequalities. Depending on the model parameters, these
sets may lie on different faces of the simplex, representing various scenarios of epidemic
onset and resolution. Two main epidemiological scenarios are considered: one involving
complete recovery after infection with the first virus, and another involving progression
to co-infection without full recovery. The model is applicable to the analysis of tubercu-
losis co-infection with viral hepatitis B and C and allows assessment of the influence of
various parameters on patient survival during multi-drug therapy. Finally, a numerical
experiment is conducted, presenting trajectories, phase portraits, and 30-day dynamics
of disease spread, illustrating system behavior under different initial conditions and pa-
rameter settings.
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1 Introduction

The Lotka-Volterra mapping is uniquely determined by specifying a skew-symmetric
matrix A = (), a; = —aj, i, j = 1,m and acts on the simplex S™ 1 =

= {x ER™: Y x;=1, x; > O} according to the formulas [1]
i=1

:U;c:xk <1+Zakixi> , k=1,...,m, (1)
i=1

on condition |ay;| < 1. Let e, = (0, ...0,1, 0,..., 0), where “1” is at the k-th place,
then S™ ! = co{ey,...,en}, i.e. the simplex is a convex hull of points ey, which are
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called vertices of the simplex of the S™ 1. If v C I = {1, 2,...,m} is a nonempty subset,
then the I, = co{e; : k € v} is called the |y| — 1-dimensional face of the simplex. Let
V. §m=l — S§m=1 be the Lotka-Volterra mapping defined by equality (1). Obviously,
any face of the simplex is invariant with regard to V', and the narrowing of Vto this
face is also a Lotka-Volterra mapping. Therefore, it is possible to limit the study of
dynamic properties only to the interior of the simplex. As usual, for 2° € S™ ! the

{x(")} trajectory is determined by the recurrence relation

" v n=0,1,... (2)
For any z° € S™71 let’s put w(z’) = {xo, . } — the set of limit points of the
positive trajectory and a(z?) = {xo, 277 27 } — the set of limit points of the

negative trajectory. Since the simplex is compact, then w(2®) # @, a(z") # @, and they
are closed and invariant with regarding to the V' mapping . It is also known that from
2% € 8™ and 2° # V2P should w(2%) € 95™ L, i.e. w(2®) belongs to the boundary of
the simplex. Next, we will need a theorem from

Theorem 1. [1-4]. Let A = (ax;) be a skew-symmetric matrix, in this case P =
={r eSS Az >0} £2, Q={reS"!: Ar <0} # & consist of from fixed
points.

Definition 1. [4-6]. A graph with vertices 1, 2, ...,m is called a partially oriented
graph in which any two vertices are connected by a directed edge is called a tournament.
It is clear that with each skew-symmetric matrix, a partially oriented graph corresponding
to it can be considered. For example, the matrix

0 a 0 -=b
—a 0 ¢ d

A= 0 —c 0 0]’
b —d 0 0

where a, b, ¢, d > 0 corresponds to a partially oriented graph [4]:

I

Figure 1 A partially oriented graph corresponding to the matrix A

Definition 2. [6,7]. A skew-symmetric matrix is called a general position matrix if
all major minors of even order are positive.

It is known |7] that the general position matrices form an open and everywhere dense
subset in the set of all skew-symmetric matrices, moreover, the corresponding partially



Degenerate Lotka-Volterra mappings and their corresponding ... 17

oriented graph is a tournament In general |6, 7], it is proved that w(x®) either consists of
a single point or infinitely. It is also known [3] that in the case of strong tournaments, as
a rule, infinitely, moreover, the Cesaro averages of positive trajectories do not converge.
The main purpose of the work is an analytical analysis of those Lotka-Volterra mappings
that describe the course of airborne diseases, i.e. to find for them sets of limit points
of a positive and negative trajectory. In epidemiology, a set of limit points of a positive
trajectory means the focus of the disease, and a set of limit points of a negative trajectory
means the area of the end of the diseased population.

2 Statement of the problem and results

The discrete variants of the models studied in the works are considered below [8-10].
It should be noted that the dynamic behavior of trajectories in discrete models differs
significantly from the dynamics of continuous models. Let

0 —a 0 b

a 0 —c O
A= 0O ¢ 0 dJ’

-b 0 —-d 0

where 0 < a, b, ¢, d < 1. Obviously, det A = (ad + bc)2 > 0 and therefore KerAnS? =
= @. Solving inequalities P = {z € S?: Az >0} and Q = {z € S*: Ax < 0} we get

o 5 o (0 S )

where 0 < XA < 1. In this case, the V; : §3 — S3 defined by the A matrix has the form

x; = x1(1 — axy + bxy),
Ty = x9(1 + axy — cas),
Vi ? 4
! xg = x3(1 + cxg + day), (4)
zy = x4(1 — by — das).

Theorem 2. If z° is the inner point of the simplex, then a(z°) C P and w(2°) C Q,
with both positive and negative trajectories converging.
Proof. According to (4) we have

A =l (14 e+ dall) m =0, 1, (5)

Clearly, {mg”)} converges. Since {xén)} is limited, then lim z{” = lim z{” = 0.

n—-+00 n—+oo
Therefore, w(z®) C T3 = co{ey, e3}. As is known [11], the convergence of the series

follows from (5) > xé") and > xi"), which ensures the convergence of the sequence xﬁ”),
n=0

n=0
with lim xﬁ”) > 0. Obviously, lim xin) < 1. Calculating the Jacobian of fixed points

n—-+oo n—-+o0o
on the face '3 we get

JV ()= (1=N*(1+ax; —cxs— ) (1 —bay —dus — \).

Hence the eigenvalues of the Jacobian A\; = Ay = 1; \3 = 1+ax; —cx3, Ay = 1—bxr;—dxs,
and \y = 1—bx; —dxs < 1 for all points from I'y5. If 21 < a%rc is on the edge of I'y3 , then
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Az < 1, with z; > -2, the corresponding fixed point is a saddle point, which means it

cannot belong to the set of Q. Hence, w(z°) C Q. For negative trajectories, the sequence

(=n)

of {x(fn)} at n — 400 is increasing and limited. Therefore, lim z; 7/ = lim a:z(;n) =0,
n—oo

n—o0

and the series Z 247 and Z 2™ converge. Repeating the previous arguments , we
n=0

get a(2') C P. Theorem 2 is proved.

Definition 4. The points p € P and ¢ € Q form a (p, q) pair if there is a 2° € S3
such that w(z?) = ¢, a(z") = p.

Remark 1. Since, in this example, \3 and A4 are simple eigenvalues of multiplicity
”1”, then the correspondence of p <+ ¢ is mutually unambiguous.

Let
0 —a 0 b
a 0 —c 0
A= 0 ¢ 0 —dJ)|’
-b 0 d 0
where 0 < a, b, ¢, d < 1. Obviously, det A = (ad — bc)g.
1) If ad = be, then the calculations show that KerANS® = P = Q = [M;, M,], where
M, = (a+c, 0, aic, 0) and My = (0, Cid, 0, C+d) the ends of the segment [My, M.

Here the V5 : S3 — S mapping is set by the equalities:

r) = x1(1 — axq + bay),
$;:$2(1+ax1—cx5)7 (6)
ZE/3 :{E3<1+CZL‘2 4)a
xy = x4(1 — bxy + das).

Theorem 3. If 2° is the inner point of the simplex, and 2° # V°, the positive
trajectory does not converge and w(z) C 953, and the negative trajectory converges,
and a(z%) C [My, Moy).

Proof. Let’s assume that lim 2™ = z*. Then z* must be a fixed point for V.
n—-+0o

All points of the three segments are fixed [M;, M), [e1, es], [e2, €4]. On the segment
le1, es], the Jacobian eigenvalues are found from the equation

(1 =N (1 +ax; —cxs— ) (1 —bay +dus — \) = 0.

Note that (axy — cx3) (—bry — dxs) = —abx? + adzix3 — cbrixs — cdri < 0, as ad = be.
Hence, of the numbers A\3 = 1 4+ axy — crgand \y = 1 — bxy + dxs, one is greater than
"1” and the other is less than ”"1”. Thus, any fixed point from [e;, e3] is a saddle point.
Therefore, z* ¢ [eq, e3]. We also get that z* ¢ [es, e4]. The points of the segment of
the [My, Ms], with the exception of the ends, are internal fixed points. Therefore, the
spectrum of the Jacobian

1—X —ax 0 bxq
ary 1—X —cxy 0

0 cxs 1—XN —dxy
—bl’4 0 dl‘4 1—A

= 0.

Having calculated the value of the determinant, we get:

(1-— >\)4 + (a2x1x2 + b*xig + Caroxsg + d2x3x4) (1— /\)2 + (ad — bc)2x1x2x3x4 =0.
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Because ad = be, then A\; = Ay = 1 and A3, Ay are complex numbers, and |A3] > 1,
|A4] > 1. Therefore, w(z°) is not contained in the [M;, M,] segment. Thus, the positive
trajectory does not converge, w(xz?) C 9S% and it is infinite. The convergence of the
negative trajectory and a(x®) C [M;, My] follows from the general statement. Theorem
3 is proved.

Remark 2. If 2° € 05? and 2° # Va0, then it is easy to prove that the trajectory
converges, moreover, (z%) and w(z") belong to either I';3 = [eg, e3] or oy = [eg, €4] . In
this example, at the boundary of the simplex, the trajectories converge, but inside the
simplex, the positive trajectories do not converge.

2) Consider the case:ad > bc. Obviously, Ker AN S® = @, just like
det A = (ad — be)® # 0. Next, solving linear inequalities, we get P = {z € % : Az > 0} =

= [By, By - T3, Where By = ( 2%, 0, 7%, 0) and By = ( 395, 0, 325, 0).
Q={reS?: Axr <0} =[O}, Cy] C 'y, where C) = (O, a;ib, 0, -5, 0) and
Cy = (O, c%v 0, =5 O). Since ad > be, then = < b%d and a%b < ﬁ. Therefore,
P # @ and Q # @ (Fig. 2).
r ¢
O/ /// /17 1/ — S
£, I B, et e, L [ e,

Figure 2 The intervals in which the start and end points of the trajectory are located

3) Let ad < be. Solving the inequalities Az > 0 and Az < 0 on the S3 sim-

plex, taking into account that ad < bc we obtain: P = [K;, Ky C T'gy,where

Kl = (07 ﬁ7 07 (H,Ld)u KQ = (07 a;:l)’ 07 aLer)’ Q = [Lh LQ] - F137Where Ll =
d b c a

= ( b—‘r_d’ 07 b—‘r_d’ O) ) LQ = (a_—‘rc’ 07 a_—‘rc’ O) .

Theorem 4. For any inner point 2° of the simplex S3, the trajectories both positive
and negative converge, with a(z°) C P and w(z°) C Q.

Proof. Let p = (p1, 0, p3, 0) € P. On the simplex S3, consider the function ¢(z) =
=o' - ah Obviously,iré%%{ o(x) = pi* - ph® = ¢, moreover, the maximum is achieved only

at one point, and max ¢(r) =0 at x € 0S3. Tt is easy to verify that for any 0 < [ < ¢, the
IS

set {x € S3; p(x) <1} is a nonempty convex closed set. Applying Young’s inequality for

o(Vax)we get [1], [12-14]

(V) = (1 (1 — axg + bxy))™ - (23 (1 4 cxo — dzy))” =

= a2l (1 — azg + by’ (1 4 cxg — day)” = p(x)-(1 — axg + bxy)" (1 + cxg — dry)” <

< () - (p1 — ap1xe + bp1xy + p3 + cp3xe — dpszy) =
= (x) - (1 = (ap1 — cp3) v2 — (dps — bpy) 4) . (7)

If p = (p1, 0, p3, 0) belongs to the interior of the segment [B, By, then we get, ap; —
—¢p3 > 0 and dps — bp; > 0. Given that x° is the inner starting point of (7), we find

p(Va®) = p(a”). (8)
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According to (8) the @(z) function decreases along any positive trajectory and in-
creases along a negative trajectory, i.e. it is a Lyapunov function for a discrete dy-
namical system (6) Lotka-Volterra under the condition ad > bc. Therefore, with 20 =
={z € 8%: ¢(z) > 1}, the entire negative trajectory is contained in this set, i.e. a (2°) =
={r € S5%: p(x) > 1}, and the positive trajectory starting from some number does not
belong to this set. So, we get that o (2°) C P. Calculating the eigenvalues of the Jacobian
at points from Q, we find \y = Ay =1, A3 = 1+ caxo—dxy, Ay =1 —axy+bry. Within the
[Cy, Cy] segment , the cxy —dxy < 0 and —axy+bxy < 0 inequalities are true . Therefore,
A3 < 1 and Ay < 1, i.e. the inner points of the [C}, Cs] segment are attractive for positive
trajectories. Therefore, w(x®) consists of one point, and w(z®) C Q = [Cy, Cy]. Theorem
4 is proved.

Theorem 5. Any trajectory converges, and a(z°) C P, w(z°) C Q.
The proof is carried out in the same way as in Theorem 4.

Now let’s move on to the simplex an order of magnitude higher, i.e. consider the
operator acting in S*. Let the skew-symmetric matrix and the partially oriented graph
corresponding to it have the following form:

0O 0 ¢ —=b a
0O 0 —f e —d
A=|= f 0 o0 o],

b —e 0 0 O

—a d 0 0 0
x) = x1(1 + cas — by + axs),
Ty = 7o(1 — frs + exy — dus),

V. St gt Ty = x3(1 — cay + fry), (9)

x, = x4(1 4 bxy — exy),
rs = x5(1 — ax; + dwy),

where 0 < a,b,c,d,e, f < 1.

(=M [d

£,

Figure 3 A fully oriented bigraph, corresponding to the V : % — S% mapping and the A
matrix

Theorem 6. For the mapping defined by the equalities (8), the following are condi-
tions:

~by the condition af > cd and bd > ae the set consists P of an edge segment I'y5, i.e.
P =AB C I'ys;

~by the condition af < cd and fb > ce the set consists P of an edge segment ['q5, i.e.
P =B CTs.
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Proof. According to Theorem 1, we find the set P = {z € S*: Az > 0}, solving the
system of inequalities
crs — bxry + axs = 0,
—f[Eg +exy — d1‘5 = O,
—cry + fro >0, (10)
bxr, —exy > 0,
—axry + dre = 0,

and we will find the following solution, i.e. we will get the segment :

xlé%; Ty 2 7

X1 2 b—i;e’ T2 g bre’
T1 < 7o T2 2 g
The location of the segment depends on the coefficients. Let af > cd and bd > ae. Then
A= (5 520 0.0), B= (55, 50, 0,0). This means that P = AB C I';5. For
the conditions af < cd and fb > ce it is proved similarly. Theorem 6 has been proved.
Theorem 7. For the mapping defined by the equalities (9) under the condition
bf < ce and bd < ae, the set consists of a part of the face I'sy5, i.e. P = ADFEes N
AMNeg C F345.
Proof. To do this, we also solve the system (10), on the face of I'345, for this we apply

the condition x; = x5 = 0, then we get

cx3 — bxry + axs = 0, (11)
—fl’g +exy — dl’g, Z 0.

Here, to solve it, you need to consider several cases, i.e. the section of the face I'sy5 :
1) Consider an edge I'sy : Here x5 = 0 and x3 + x4 = 1,23 + 4 = 1, then the system
(11) has the form
cxs —b(l —x3) =0,
{ _f$3+€(1—$3)>0

The solution of that system under the bf ce condition consists of a DFE segment , i.e

f
D=(0,0 5.0), E= (0,0, 7%, 7.0).
2) Consider an edge I's5 : Here 24 = 0 and 23 + x5 = 1, then the system (11) has the

form

) c+b’

crs+a(l —x3) >0,
—f.ilfg — d(l — .173) 2 0.

This system has no solution at 0 < a, ¢, f, d < 1.
3) Consider an edge T'y5 : Here x3 = 0 and x4 + x5 = 1, then the system (11) has the
form

—bZL’4 + (1(1 — I4) = 0,
exy —d(1 —xz4) > 0.

Solution of the system %l < x4 < ;&g only it makes sense if bd < ae, that is, it is a
segment MN: M = (O 0, 0, ;% aib) N = (O 0, 0, e+d, e+d) Combining all three
cases, under the condition bf < ce and bd < ae, we get the set P = ADFEes N AM Nes C

[345 (see Figure 4).
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Figure 4 The set P = ADFEe; N AMNes C I'yy5

Now let’s prove the theorem for the locations of the set.

Theorem 8. For the mapping defined by the equalities (9), the set @ consists of the
following:

— by the condition ce > fb and af > cd the set consists () of an edge segment ['15, i.e.
Q =B CTI'y;

— by the condition cd > af and bd < ae the set consists () of an edge segment I'5, i.e.
Q = BC CTI'ys.

Proof. To do this, we solve the Q = {z € S*: Az < 0} system from the theorem 1:

cr3 — bry + ars <0,
—fxg +exy — d£U5 < O,
—Ccxy + fl’g < O, (12)
bxry — exy <0,
—axy + dxy < 0.
We get a solution in the form of
< L s > e
1 X c+f 2 = c+f
T1 2 e T2 S e

d
1 < g T2 2 g

Here, under the condition of ce > fb and af > cd, there are many () = B C I';. The
second part of the theorem is proved similarly.
Theorem 9. For the mapping defined by the equalities (9) under the condition bf >
ce and bd < ae the set consists of a part of the face I'sy5, i.e. Q = AEDesNAN Mez C I'sys.
Proof. The theorem is proved similarly to Theorem 7.

3 A discrete model of the interaction of two viruses

In this part of the paper, we will consider the application of the operator in question
in epidemiology. In the previous part of the paper, we investigated the dynamics of an
operator operating in a four-dimensional simplex. This operator can fully serve as a
discrete compartmental model describing the evolution of the interaction of two airborne
viruses. A four-dimensional simplex means a closed population. The population is divided
into five groups, such as: S is the part of the population that is susceptible to infection,
but has not yet been infected; E is the part of the population that has the latent form of
the first virus; I; is the part of the population infected with the first virus; I is the part
of the population infected with the second virus; R is the part of the population that got
rid of the first virus. Then our model looks like:



Degenerate Lotka-Volterra mappings and their corresponding ... 23

(St = 5] 4 c[<” bE™ + qRM),
1<““ (1 FIM + eEM™ — qR™),
I(”+1) _I">(1—c5 +f] ),
B+ = EO(1 4 bS™ — eI(),

[ ROHD = R(1 — q8™ df{’“).

The epidemiological system corresponding to this model is depicted in Figure 5.

Figure 5 The spread trajectory of two-symptom viruses
This model describes two types of virus flow:
)S—F—1—-R—S,

In both routes, individuals pass through the latency period of the first virus. But

strangely enough, the picture is different in both cases:
— in the first route, individuals will become infected only with the first virus, and then
they recover and the recovered individuals return to the healthy part of the population;
— in the second route, individuals after infection with the first virus have contact with
patients with the second type of virus. This type of patient does not have the opportunity
to fully recover, and they, having the interaction of two viruses, return to a healthy part
of the population.

This model describes a very complex disease structure. For example, the epidemiology
of tuberculosis and its co-infections (viral hepatitis B and C). Despite the study of the
epidemiology of tuberculosis and its co-infection (viral hepatitis B and C) over the past
decades, a number of questions remain, including those related to the impact of co-
infection on survival, depending on the chosen treatment regimen for tuberculosis, the
likelihood of adverse outcomes in the form of gastrointestinal bleeding and cirrhosis of the
liver and their connections with the therapy of the underlying disease.

Our main goal is to evaluate the survival rate of tuberculosis patients with co-infection
(viral hepatitis B and C) and receiving multicomponent chemotherapy. The presence of
chronic viral hepatitis B and/or C in patients with tuberculosis did not affect mortality
from all causes and regardless of the type of virus during a long follow-up period. Patients
who did not receive treatment for viral hepatitis and who had tuberculosis had a higher
risk of death from all causes. The set of P means the beginning of the disease, and the
set of () means the end, that is, getting rid of the virus. Below we present a numerical
analysis, consider the numerical dynamics and phase portrait (see Figure 6 and Table 1).
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X= 01 o= 02 f= 0.3 E= [E'(1-a"X+d'V)
02 0.1 X*(1+c"Z-b"D+a"E)
Z= 03 = (03 Y*(1-FZ+e"D-d°E)
D= 02 d= |03 = [ Z-CXAY)
n= 30 e= 03 D'=  D*(1+b*X-e"Y)
Get values
0.6
054
0.4
=00~
03{ e®® *e.
024
0.1
0.0+
[ 5 10 15 20 25 30
X= 01 = 03 = 0.3 E*(1-a"X+d"Y)
Y= |02 b= 04 X'=  [X*(1+c"Z-b*D+a’E)
z= |03 <= 05 Y= V(1-fZ+e*D-d'E)
b= 02 d= 06 Z= [Z(l-cRet V)
n= [30 08 D'= [Dr(1+bX-e")
Getvalues
05
0.4
03 S e g
-
0.2 0.’
.
['S
* 9.
0.1
L3
LY - 4
oo 0o -0 o0
0 5 10 15 20 25 30
X= 01 a= |06 = 0.5 E= [E(1-a*K+d*Y)
¥= o2 b= |07 [x*(1+cZ-b"D+a"E)
Z= 03 = |08 V*(1-Z+e*D-d"E)
d= [0z [z 1-c%e )
- [ - ot D= e

Figure 6 30-day analysis of the spread of two-symptom diseases among the population

4 Conclusion

In [1-3], [6, 7] discrete Lotka-Volterra mappings with skew-symmetric matrices in gen-
eral position are investigated. It is known [11] that tournaments correspond to a matrix

xmvnzzninoztnz
703

X=02 Y=0.1 Z=031 D=0.16 E=0.23
xﬂ”YDMZDEDD\EEDH

11: X=031 Y=0,07 Z=0.26 D=0.16 £=021

=0.1 ¥=02 Z=03 D=0.2 E=02
: X=0.11 ¥=0.19 Z=03 D=0.18 E=022

B EEE

21 0-0.13

0.18 D=0.14

11: X=04 ¥=006 Z=0.15 D-Dwe E=023
06

20: X=008 ¥=0.13 7=058 D=0.1 E=0.11
[30: X=0.12 ¥=0.1 Z=0.58 D=0.1 E=0.11
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Table 1. Results of a 30-day numerical analysis of the prevalence of two-symptom
diseases among the population
X=0.1, Y=0.2, 7=0.3, D=0.2, E=0.2
a=0.2, b=0.1, ¢=0.3, d=0.3, a=0.3, b=0.4, ¢=0.5, d=0.6, a=0.6, b=0.7, ¢=0.8, d=0.2,
e=03, =03 e=0.8, =03 e=0.4, =05

X Y Z D E X Y Z D E X Y Z D E
0.1 jo02 (03 |02 02 |01 02 |03 |02 |02 |01 j02 |03 |02 |02
0.11 [0.18 {031 |0.19 021 |0.11 [ 0.19 0.3 [0.18]0.22]0.12]0.18 | 031 | 0.2 |0.19
0.1210.16 1032 |0.18 1021 |0.13 /0.17 03 |0.16024|0.15]0.16 |03 |02 |0.19
0.14 10.15(032]0.18022]0.15/0.16 |03 |0.14]0.25|0.18 | 0.14 | 0.29 | 0.21 | 0.18
0.16 1013 1032|0.17 1022 |0.18 1 0.14 |1 029 0.13 | 0.26 | 0.22 | 0.13 | 0.27 | 0.22 | 0.16
0.17 {0.12 {032 ] 0.17 | 0.23 | 0.21 | 0.12 | 0.28 | 0.13 | 0.27 | 0.25 | 0.12 | 0.24 | 0.25 | 0.15
02 |01 |031]0.16(023|024 /0.1 [026|0.13]0.27 028 |0.110.21 | 028 | 0.13
02200903 |0.16|022|0.280.09|024(0.13]027]029|0.110.17 |0.32|0.11
0.25]0.08 1029 |0.16 022|032 008 | 021|0.13]026|028|0.11|0.14 | 0.37 | 0.09
0.28 | 0.07 { 028 | 0.16 | 0.21 | 0.36 | 0.07 | 0.18 | 0.14 | 0.25 | 0.26 | 0.12 | 0.12 | 0.43 | 0.08
0311007 026|016 021 |04 |0.060.15]|0.16023]|022]0.13|0.1 | 048 0.07
034 1006 02401602 043 ]0.06 |0.12|0.17]0.21]0.17]0.15]0.09 | 0.53 | 0.06
0.3710.05022|0.17 10.19 | 046 | 0.06 | 0.1 |02 ]0.19]0.12 ]0.17 | 0.08 | 0.57 | 0.06
04 [0.05(02 |0.17]0.18]0.47 | 0.06 | 0.08 | 0.22 | 0.17 | 0.09 | 0.2 | 0.08 | 0.58 | 0.05
043 1005|018 |0.17 |0.17 | 047 | 0.06 | 0.06 | 0.25 | 0.15 | 0.06 | 0.23 | 0.08 | 0.57 | 0.05
0.46 | 0.04 [ 0.16 | 0.18 [ 0.15 | 0.46 | 0.07 | 0.05 | 0.29 | 0.14 | 0.04 | 0.27 | 0.09 | 0.54 | 0.05
049 1004 |0.14 | 0.18 /1 0.14 | 043 |1 0.07 | 0.04 | 0.33 | 0.12 | 0.03 | 032 | 0.1 | 0.49 | 0.06
0.52 {0.04 {0.12 ] 0.19 | 0.13 | 0.04 | 0.09 | 0.03 | 0.37 | 0.11 | 0.02 | 0.36 | 0.11 | 0.44 | 0.05
054100401 (02 |0.12|0360.11 003]0.04]0.11]002]04 |0.13|0.390.06
0.56 | 0.04 | 0.09 | 0.21 | 0.11 | 032 | 0.13 |/ 0.02 042 ]0.1 |0.02]043|0.16 | 0.33 | 0.07
0.5710.04 00702201 |0280.17 002|043 ]0.1 |0.02]045|0.19 | 0.28 | 0.07
0.58 | 0.04 | 0.06 | 0.23 [ 0.09 | 0.24 | 0.22 | 0.02 [ 042 | 0.1 |0.02 045 |0.23 | 0.23 | 0.08
0.59 10.04 | 005|024 0.08|0.21 028 0.02]|0.39]0.11]0.02]0.43|0.27|0.19|0.08
0.6 [0.04|0.04]025|007)0.19034|0.02|034]0.12]0.02]04 |0.330.16 | 0.09
0.6 |0.05|004|026)|0.06/|0.17 041 0.02]027]0.14]0.02]0.35|0.39|0.14 | 0.1
0.6 [0.05(0.03]027|006)|0.16 046 |0.02 (02 [0.16003|{03 |0450.12 0.1
0.59 1 0.05 003|028 |0.05|0.16 049 | 0.02|0.14 02 |0.04 024|051 |0.11 | 0.11
0.59 [ 0.05 | 0.02 029 |0.04 | 0.16 | 0.48 | 0.02 | 0.09 | 0.25 | 0.06 | 0.18 | 0.55 | 0.1 0.11
0.58 1 0.06 | 002|031 0.04|0.16 044 |0.02|0.06|031]|008]0.13|058/|0.1 |0.11
0.57 | 0.06 | 0.01 | 032 | 0.04 | 0.18 | 0.38 | 0.02 | 0.04 | 0.37 | 0.12 | 0.1 0.58 | 0.1 0.11

of this type. In the proposed work, the dynamics of trajectories, internal points of degen-
erate cases of Lotka-Volterra mappings are investigated, since they can be used to model
the course of airborne diseases. In [12,13], a discrete analogue of the compartmental
model based on the degenerate Lotka-Volterra mapping operating in S* is proposed. We
propose a complete analytical study for a discrete model, which can be built on the basis
of a mapping acting in a three-dimensional simplex defined by equalities (6). In addition,
a degenerate Lotka-Volterra mapping acting in S* is considered.

In the continuous models considered in [16-18], it is important to find the basic repro-
ductive number and, by its value, conclude whether the virus persists in the population or
not. We also propose degenerate cases of Lotka-Volterra mappings as discrete analogues.
The main difference lies in finding a set of limit points of a positive and negative trajec-
tory, the meaning of which, in turn, lies in the area of the part of the population in which
epidemiology begins and, accordingly, where it ends.

Here we have constructed a discrete model based on degenerate Lotka-Volterra map-
pings corresponding to complete oriented bigraphs. The constructed model describes the
evolution of the interaction of two viruses. An example of such viruses is tuberculosis and
its co-infections. The main goal is to evaluate the survival of tuberculosis patients with
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co-infection (viral hepatitis B and C) and receiving multicomponent chemotherapy. We
took data from thirty days of these viruses and made a numerical analysis of their course
among the population of the Osh region of the Republic of Kyrgyzstan.
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BBIPO2K/IEHHBIE OTOBPAZKEHUN A JIOTKU-BOJIBTEPPBI
N COOTBETCTBVYIOIIINE NM BUT'PA®HBI KAK
JANCKPETHAA MOJEJIb 9BOJITOITINN

B3AUMO/JENCTBUA IBYX BUPYCOB

Mymuros Y.P.
ulugbek.muminov.2020@mail.ru
TamkeHTCKU THCTUTYT MEHEJKMEHTa, U SKOHOMUKH,
Vabexncran, @eprana, yia. b. Mapruranu 139.

B pabore mpemraraercs AuCKpeTHAs MOIETh B3AWMOIEHCTBHUS JBYX BO3IYIITHO-
KalleJIbHBIX BUPYCOB, OCHOBaHHas Ha orneparope JloTku-Bosbrepphl, JeficTByoiemM B 1e-
TBIPEXMEPHOM CHUMILJIEKCE. DTa MOJETh OMUCHIBAET PA3BUTHUE SIUIEMUYECKOr0 MpPOIecca
B 3aMKHYTOI NONY/JIANNANA, Pa3/le/eHHON Ha IIsiTh KJIACCOB: BOCIPUMMYMUBBIE, HAXOISIIN-
ecd B JIQTEHTHOW CTAJUM MEPBOTO BUPYCA, WHMUIIMPOBAHHBIE MEPBBHIM BHPYCOM, WH(U-
TUPOBAHHBIE BTOPHIM BUPYCOM W BBI3AOPOBEBIITNE ITOCJIC TIEPBOTO BUPYCa. MaTeMaTI/Iqe-
cKas CTPYKTYpPa MOJIESU YUUTHIBAET CJOKHBIE IMEPEXO/Ibl MEXK/JIy COCTOSTHUSIMU W B3au-
MOJZIEHiCTBUE TIITAMMOB, BKJItoUasd ciaydan kouHbpexkmu. Ocoboe BHUMAHNE YIeJeHO aHa-
JIU3y MHOXKECTBA HAYAJBHBIX U KOHETHBIX COCTOSTHUN OOJE3HU, OMPEIETIeMbIX CUCTEMO
HEPpaBEHCTB. B 3aBUCUMOCTH OT IMapaMETPOB MOAETN ITU MHOXKECTBAa MOTYT JIC2KATh Ha
PAa3MINYHBIX TPAHAX CHUMILJIEKCA, YTO COOTBETCTBYET PA3JIMYHLIM CHEHAPUAM HaAYaJJId N
OKOHYAHUS SMUIEMUH. PaccMaTpuBaioTCd /ABa KJIOYEBBIX SMUAEMUOJOTUIECKUX CIIeHA-
pUsi: OJUH C TOJIHBIM BBI3J0DOBJEHUEM II0C/IE TIEPBOTO BUPYCA, APYTOil — C HEPEXoI0M
MHGUIHPOBAHHBIX TIEPBBIM BUPYCOM B COCTOSTHUE KOMHQEKITUHN ¢ HEBOZMOKHOCTHIO TIOJI-
HOTO BBI30pOoBJIeHUs. Moiesib npuMennMa K aHan3y KouHdeKnnu TybepKyiésa ¢ BUpyc-
HBIMU T'€IlaTUTaAMU B n C 1 TMIO3BOJIACT OIIEHUBATDH BJIMAHNE PA3JIUYIHBLIX TTapaMeTpPOB Ha
BBIXKHBAEMOCTD MMAITMEHTOB TP MHOTOKOMIIOHEHTHON Tepanuu. B 3aK/I09€HIE TTPOBEIEH
YUCJIEHHBIN 9KCIIEPUMEHT: TIPEJCTaBIeHbl TpaeKTopun, hazopbie noprpersl u 30-1HEeBHAS
JUHAMUKA PACIPOCTpaHEHWs 3ab0JeBaHNs, WLTIOCTPUPYIOIIHE TTOBEeIeHe CUCTEMbl TIPH

Pa3/INYHBIX HaYdJIbHbIX YC/JOBUAX U IIapaMeTpax.

KaroueBbie cioBa: orobpaxkenue JIoTku-Boabreppnl, cuMILIeKC, KOCOCUMMETPUAIHAST
MaTPHIA, BRIIYKAad 000J09Ka, TPAEKTOPHSI, YJACTHIHO OPUEHTHPOBAHHLIA rpad, burpad.

HurupoBanue: Mymunos Y.P. Beipoxaenunie orobpaxkenns Jlotku-BoabTeppsl u co-
oTBeTCTBYIOIME M Ourpadbl Kak AUCKPETHAs MOEb IBOJIIONNN B3AUMOAEHCTBIA ABYX
Bupycos // IIpobsembl BBIYMCANTENBHON U TIPpUKIaaHON MaremaTuku. — 2025. — Ne3(67).

- C.15-27.
DOI: https://doi.org/10.71310/pcam.3_67.2025.02.
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