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Fractured porous media (FPM) in theoretical investigations is considered as a system
of fractures and adjacent porous blocks (matrix). In such media, solute transport occurs
mainly through the fracture system with mass transfer in porous blocks. In this work, the
problem of solute transport through an element of FPM is studied, taking into account
the memory effects. The medium consists of a single fracture and a porous block (matrix)
bordering it. The problem was solved numerically using the finite difference method with
Caputo’s definition of fractional derivatives. Based on the numerical results, concentra-
tion profiles in the fracture and matrix were obtained. The influence of the fractional
order of derivatives on the distribution of concentration is shown. The current, total and
summing flow rates of the solute from the fracture into the matrix were also determined.
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1 Introduction

In recent years, energy problems have become a pressing issue all over the world, so
much attention is paid to oil and gas production as the main source of energy. Oil and gas
are located underground, largely in fractured porous media. Numerous scientific research
are being carried out and scientific papers are being published on the transfer of gas and
oil in reservoirs. Fractures and fracture networks are major conduits for the transport
of hydrothermal fluids, contaminants in water and groundwater systems, and oil and gas
in reservoirs [1]. Here another problem arises, when the solute transport through the
channels, diffusion transport occurs into the porous medium near the fracture. In [2] the
above mentioned problems are modeled based on the physical and mechanical nature of
the medium, analytical solution of the problem has been obtained and compared with
experimental results. Diffusion of a solute from the fracture to the matrix is an important
factor in assessing the transfer of pollutants and assessing the diffusion characteristics of
a medium |[3, 4].

In laboratory experiments carried out on a small sample taken from a homogeneous
porous medium to study the solute transport at different flow velocities, and a model
suitable for this medium was created, and the results obtained with its help were com-
pared with the experimental results [5]. The assumption of a linear dependence of the
dispersion and flow rates coefficients on the mass flow significantly improves the model
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and is confirmed when compared with experimental results [5]. This is important not
only for studying the transfer of oil and gas, but also the transportation of pollutants in
a FPM [6-8|.

Underground rocks can be deformed by pressure from overlying rock layers. If a
fractured-porous medium is deformable, then oil production in such environments has
its specifics. Several works have modeled multiphase filtration processes in deformable
porous media. In this case, the density of each phase is assumed to be constant, capillary
pressures between phases are neglected, and problems for this model are formulated and
solved numerically [9, 10].

Sometimes the results of modeling the solute transport in complex structural media
using Fick’s law do not agree with experimental data [11,12], but relatively good results
are obtained when modeling such processes using fractional differential equations [13].

Based on the structure and properties of FPM, many problems have been modeled
and solved using various methods. Solute transport processes in coaxial cylindrical two-
zone inhomogeneous media were modeled by fractional order differential equations and
the corresponding problems were solved numerically taking into account the presence of
two zones of the medium - micropores and macropores [14].

This paper considers the problem of anomalous solute transport in a FPM element
consisting of a single fracture and a matrix [2,15]. The transport memory effect is taken
into account both in the fracture and in the porous block. Fractional time derivatives
in the equations appear both in the matrix and in the fracture. Thus, here anomalous
phenomena can occur in a fracture and a porous block to varying degrees, which leads to
various options for the manifestation of the mutual influence of anomalous phenomena in
a fracture and a porous block.

2 Statement of problem

A fracture is considered to be a semi-infinite one-dimensional object. This formulation
does not take into account the second dimension of the fracture, namely its width. The
porous block occupies a quarter of the entire surface (Fig. 1). Following this formulation,
the region R{0 < z < 00,0 < y < oo}. From the z = 0 end of the fracture a liquid
with concentration ¢, is injected. Let the liquid flow in the fracture at a given constant
velocity v. Initially, the fracture and porous block are considered to be filled with pure
(no solute) liquid. In a fracture, convective-diffusion solute transport occurs, and only
diffusion in a porous block. The transfer process in a porous block and fracture occurs
with the manifestation of anomalous phenomena.

Porous
block

y, m

e g e Ty

c.= ——> fracture

X, m

Fig. 1. The element of fractured - porous medium
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The equations of solute transport and fluid flow in the FPM element we write in the
following form

0% Oy dc; "7 (dem,
ata Ua— = Df@ + moDmatl 5 a—y ; (1)
y=0
e, d%c,,
o~ P @

where ¢, = ¢,,(t, z,y) is the solute concentration in the porous block m?®/m?; ¢; = ¢4 (¢, x)
is the solute concentration in the fracture, m*/m?; Dy is diffusion coefficient in the fracture,
m?/s%; v is velocity of fluid, m/s%; D,, is coefficient of diffusion in the matrix, m?/s7; my
is porosity coefficient of the matrix, ¢ is time, s;x,y are coordinates; «,~ is orders of
fractional derivatives with respect to time, (0 < o,y < 1).

It is assumed that up to the boundaries of the matrix y = oo and x = oo the con-
centration front c¢,, does not reach. Under these conditions, the initial and boundary
conditions have the form:

cs(0,2) =0,¢,(0,2,y) =0, (3)
cp(t,0) = co,c(t,00) =0, ¢o= const, (4)
Cm(t,2,0) = cp(t, ), cn(t, z,00) = 0. (5)

The problem (1), (2) under conditions (3) - (5) is solved by the finite difference method
[16]. To accomplish this, following net is constructed

a}hlhz'r = {(tjaxiayk)v tj :Tja X :ihlv Yk :kh27
j=0,J,i=0,1,..., k=0,1,..., 7=T/J},

where h; is the net step by the axis x, hy is the net step in the direction of y, 7 is the
time step of the net, 7" is the maximum time during which the process is studied, J is the
number of net intervals in ¢.

Equations (1), (2) are approximated on the net wp,p,r. To do this, explicit scheme
is used, and fractional derivatives are defined in the sense of Caputo. Consequently, the
approximations have the form

W [Z ()i = ()f)  (G=p+ D) =G =) | +
1 n . (Cf)g+1 - (Cf)‘z
o [(cf)z - (Cfm +v -

- (1 _T_nf(;)D;—'yhg ' [Z ((Cm)ig_l - (Cm)io - (Cm)i—lH + (Cm)il)] :

(G0 =G ==+ L (el =20l + (ep)lyn)
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Tw Z Cm) izl Cm)ik) ((] — 1+ 1)17V —(j— l)1*7) +
1 Jj+1 i1 7
Dy,

= h_g : ((Cm)gk—l - 2(6m>gk + (Cm)gkﬂ) ,

where (Cf)'z ,(cm) are net values of functions c;(t,z) and c,(t,z,y) at net points
t;,x;) and (t;, x;, yx) accordingly, I'(+) is gamma function.
j j

Net equations (6), (7) are reduced to the following recurrent form

41 Mo D2 — )7 - I+1 !
R )-liy%mo—«%m]—
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D) (G=p+ D) =G =p)'") = (ep)],
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i=01—-1,j=0J—1,k=0K — 1.

The initial and boundary conditions are approximated as

(ef); =0, (10)
(em)ip = 0, (11)
(c)p = co, (12)
(em)o = (ep)], (13)
()] =0, (14)

' (15)
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3 Results

Numerical calculations according to (8) - (15) are carried out using the following initial
parameters [2-4]: ¢o = 0.01, m*/m?3; D, =5-107% m?/s7; Dy = 1-107°, m?/s*v =1-
-107°,m/s% my = 0.2;¢ = 3600 s and various v, a.

The results of numerical calculations are presented in Fig. 2-7.
Fig. 2 compares the concentration surfaces c,, for the anomalous case v < 1 with classical
case @ = 1. As « decreases from 1, a slower propagation of concentration surfaces in the
porous block is observed. This is a consequence of "slow'diffusion in the fracture with
decreasing o from 1 . This slowdown in the process is more clearly visible in sections of
the concentration surface ¢, at different x (Fig. 3).

In Fig. 4, 5 shown the results at & = 0.9 and different . As the value of v decreases,
"slow"diffusion occurs in the porous block. This, in turn, leads to a slowdown in the rate
of decrease in values of cy, i.e. as 7 decreases, the concentration c; increases. This can
be seen from the graphs in Fig. 5, where one can see an increase in ¢; (i.e. ¢, at y =0)
with a simultaneous slowdown in the distribution of profiles in the direction of .

Fig. 6, 7 show changes in the relative flow rates of the solute across the common
boundary of the media.
The current relative flow rate of solute through y = 0 is defined as

(16)

The total Qa1 and summing Qg,m relative flow rates across the border y = 0 are
also determined

Qoral = /0 " Qde, (17)

Quun = /0 Qs it — /0 t /O " Qddt. (18)

As can be seen in Fig. 6.7 "slow'"diffusion in a fracture leads to a decrease in the
current relative flow rate. "Slow"diffusion in a porous block due to the formation of large
concentration gradients at the boundary y = 0 leads to an increase in current flow rate
(Fig. 7). In some cases, a nonmonotonic dependence was obtained for the current relative
flow rate. This is due to a change in the total flow rate across the border y = 0 due to
a change in the concentration gradient. For the summing relative flow rate across the
border y = 0 a monotonically increasing dependence on time was obtained (Fig. 6,7 ).



10

Khuzhayorov B., Dzhiyanov T.O., Eshdavlatov Z.Z.

Figure 2 Concentration profiles ¢, on sections z = 0.1m (a), x = 0.3m (b), x = 0.5m (c),
x=0.7m (d) at t =3600s, v = 1.

Figure 1 Surface concentration ¢, at t = 3600s, v = 1 and various «
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Figure 4 Concentration profiles ¢, on sections x = 0.1m (a), z = 0.3m (b), x = 0.5m (c),
z=0.7m (d) at t =3600s, a = 0.9.
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Figure 5 Change in flow rates @ (a) by z, Qtotal (b), @sum (c) by ¢t at v = 1 and different
values of a.
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Figure 6 Change in flow rates @ (a) by z, Qiotar (b), Qsum (¢) by ¢ at v = 0.9 and different
values of a.

4 Conclusion

In the FPM element consisting of one fracture and a porous block (matrix) bordering
it, the problem of solute transport was studied taking into account the anomalies of the
transport in the fracture and matrix. The classical model of solute transport has been
improved using fractional derivatives. A system of differential equations with fractional
derivatives is solved numerically and, based on a numerical experiments, the concentration
fields in the fracture and in the porous block are determined. Numerical calculations show
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that changing the concentration profiles of solute concentration in one medium affects the
second.

As the fractional order of time derivative in both zones decreases from 1, the diffusion
of the solute slows down, i.e., the phenomenon of "slow"diffusion occurs. Slowing down
the diffusion process in a porous block leads to an acceleration of the distribution of the
solute in the fracture. The slowdown of diffusion in a fracture leads to a similar slowdown
in the diffusion process in the porous block.

Since the concentration enters the medium only through a fracture, a flow of substance
occurs at the boundary of the two media. Therefore, the concentration gradient at the
boundary is different from zero. The dependences of the current, total and summing
relative flow rates of the solute are variable spatially and temporally.
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ITEPEHOC BEIIIECTBA B 9JIEMEHTE

TPEIIIMHOBATO-IIOPCTON CPEJLI C YYETOM
QOPPEKTA ITAMATU

L2 Xyorcaépos B., ! orcuanos T.0., ! Qwodassamos 3.3.
“b.khuzhayorov@mail .ru
lcaMapKaH,Z[CKI/IfI roCyJapCTBEHHBIN YHUBEPCUTET,
yit. 140100, Vz6exkucran, r. CamapkaH, ¥ HUBepcuTeTcKuit byabsap, 15;
2Mucruryr maremarnkn nvenn B.J. Pomanosckoro AH PVa,
100174, ¥Y3bexncran, TamkenT, ya. Yuuepcurerckad, 9A.

Tpemmuosaro-nopucrag cpeaa (TTIC) B TeopeTnyeckux MCCIEIOBAHUAX PACCMATPHU-
BAETCsl KAK CHCTEMA TPEIIUH W TPUIEraiouX K HUM MOPUCTHIX OJIOKOB (Marpurbl). B
TaKUX Cpejax TPAHCIOPT PACTBOPEHHBIX BEIIECTB OCYIECTBIAETCS B OCHOBHOM dYepes
CHCTEMY TPEIINH ¢ MaCCOIEPEeHOCOM B HMOPHUCTHIX Oyi0Kax. B mammoit pabore msydaercs
3aj1aua TPAHCIOPTA BEIeCTBA Uepe3 9JeMeHT TpermuHoBaTo-nopuctoii cpeast (TIIC) ¢
yuerom adderta namstu. Cpega COCTOWT W3 OJUHOYHON TPENUHBI U IPAHUYIAIINErO C
Hell nopucToro 6;10ka (MaTPHUIH ). 388498 PEMAITCA YUCIAEHHO C UCTIOTb30BAHUEM METO-
Jla, KOHETHBIX PA3HOCTEl C ompeiesienreM ApobHBIX Mpon3Boanbix Mo Kamyro. Ha ocmo-
B€ UHCJEHHBIX PE3YIbTATOB IOJIyUYeHbl IPOMUIN KOHIIEHTPAINNA B TPEIIUHE U MATPHUIIE.
[Toxazamo Bangnne APOOHOrO MOPSIKa IPOU3BOIHBIX Ha PACIpede eHne KOHIICHTPAIIN.
Takrke onpejie/ieHbl TEKYIIKe, MOJHBIE W CYMMUPYIOIIAE PACXO/bI TIOTOKA BEINECTBA U3
TPEIUHBI B MATPHITY.

Korouesbie cioBa: muddysus, npodHbIE TPOU3BOIAHBIE, MACCOOOMEH, TPEIMHOBATO-
IIOPHCTAasl CPea, MaTPHILA.
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DOI: https://doi.org/10.71310/pcam.3 _67.2025.01.



Y 3(67) 2003 ISSN 2181-8460

HISOBLASH VA AMALIY

MATEMATIKA
MUAMMOLARI

OBTEMbI BbIYHCTHTETBHOH

H TIPHKTATHOM MATEMATHKH

PROBLEMS OF COMPUTATIONAL
AND APPLIED MATHEMATICS




ITPOBJIEMBI BEIYNCJINTEJIBHOM 1
I[TPUKJIAJTHOM MATEMATUKUA

Ne3(67) 2025

zKypnana ocnoan B 2015 romy.
N3naercs 6 pa3 B roji.

Yupeaureiab:
Hayuno-uccnemoBare/IbCKUil HHCTHTYT Pa3BUTHUs ITUGMPOBBIX TEXHOJOTHIT
HNCKYCCTBEHHOTO MHTE/LIEKTA.

I'naBHBII peaakTop:
Pasmanos H.

3amecTHTEN N IJIABHOTO pegaKTOpa:
Azamo A.A., Apumos M.M., ITTagnmeros X.M.

OTBeTCTBEHHBI CEeKpeTaphb:
Axwmemos JI. /1.
Pepaknuonnsiii coser:
Anoes P.I., Amupramues E.H. (Kazaxcran), Apymanos M.JI., Bypuames B.®.,
Barpebuna C.A. (Poccust), Sagopun A.J. (Pocenst), Urnarses H.A.,

Unbun B.I1. (Poccus), Umankynos T.C. (Kazaxcran), Uemarnnos N.1. (Poccus),
Kabauuxun C.U. (Poccus), Kapaunk B.B. (Poccus), Kyp6onos H.M., Mamaros H.C.,
Mupszaes H.M., Myxamaaues A.ILl., Hasuposa 9.111., Hopmypomos Y.B.,
Hypasmes @.M., Onanacenko B.H. (Ykpauna), Pacyamyxamenos M.M., Pacynos A.C.,
Caayanaesa I1ILA., Craposoiitos B.B. (Besapycn), Xaéros A.P., Xampkururos A.,
Xamaamon P.X., Xyxaes I1.LK., Xyxaepos B.X., Use Ex Vu (Poccus),
[MTa6ozos M.III. (Tamkukucran), Dimov 1. (Bosrapus), 1i Y. (CIITA),
Mascagni M. (CIIA), Min A. (l'epmanus), Singh D. (FOxmasa Kopes),

Singh M. (FOxmnas Kopes).

Kypuan 3aperucrpupoBan B AreHTcTBe HH(MOPMAINYT U MACCOBBIX KOMMYHUKAIIWI TPH
Avuancrpanun [pesugenta Pecnybiuku Y30eKucTaH.
Perucrpanuonnoe csuieresbetBo Ne0856 ot 5 aprycra 2015 roja.

ISSN 2181-8460, eISSN 2181-046X

[Ipu nepenedarke MaTepHaJIOB CChLIKA HA KYpPHAJ 00s3aTe/bHa.
3a ToYHOCTb (PAKTOB U JOCTOBEPHOCTH MH(MPOPMAIMH OTBETCTBEHHOCTH HECYT aBTOPHI.

A npec pemakiium:

100125, r. TamkenT, M-B. By3-2, 17A.
Ten.: +(998) 712-319-253, 712-319-249.
D-noura: journals@airi.uz.
Beb-caiiT: https://journals.airi.uz.

Jlmn3zaiin 1 BEpcTKa:
Hlapumos X. /.

Orneuarano B Tunorpadpun HU PITTU.
Ilomnucano B medath 30.06.2025 1.
@opmar 60x84 1/8. 3akaz Ne5. Tupazk 100 3K3.



PROBLEMS OF COMPUTATIONAL AND
APPLIED MATHEMATICS

No. 3(67) 2025

The journal was established in 2015.
6 issues are published per year.

Founder:
Digital Technologies and Artificial Intelligence Development Research Institute.

Editor-in-Chief:
Ravshanov N.

Deputy Editors:
Azamov A.A., Aripov M.M., Shadimetov Kh.M.

Executive Secretary:
Akhmedov D.D.

Editorial Council:

Aloev R.D., Amirgaliev E.N. (Kazakhstan), Arushanov M.L., Burnashev V.F.,
Zagrebina S.A. (Russia), Zadorin A.I. (Russia), Ignatiev N.A., Ilyin V.P. (Russia),
Imankulov T.S. (Kazakhstan), Ismagilov LI. (Russia), Kabanikhin S.I. (Russia),
Karachik V.V. (Russia), Kurbonov N.M., Mamatov N.S.,

Mirzaev N.M.,Mukhamadiev A.Sh., Nazirova E.Sh., Normurodov Ch.B., Nuraliev F.M.,
Opanasenko V.N. (Ukraine), Rasulov A.S., Sadullaeva Sh.A.; Starovoitov V.V. (Belarus),
Khayotov A.R., Khaldjigitov A., Khamdamov R.Kh., Khujaev LK., Khujayorov B.Kh.,
Chye En Un (Russia), Shabozov M.Sh. (Tajikistan), Dimov I. (Bulgaria), Li Y. (USA),
Mascagni M. (USA), Min A. (Germany), Singh D. (South Korea), Singh M. (South
Korea).

The journal is registered by Agency of Information and Mass Communications under the
Administration of the President of the Republic of Uzbekistan.
The registration certificate No. 0856 of 5 August 2015.

ISSN 2181-8460, eISSN 2181-046X

At a reprint of materials the reference to the journal is obligatory.
Authors are responsible for the accuracy of the facts and reliability of the information.

Address:

100125, Tashkent, Buz-2, 17A.
Tel.: +(998) 712-319-253, 712-319-249.
E-mail: journals@airi.uz.
Web-site: https://journals.airi.uz.

Layout design:
Sharipov Kh.D.

DTAIDRI printing office.
Signed for print 30.06.2025
Format 60x84 1/8. Order No. 5. Print run of 100 copies.



Coaepzkanue

Xyocaépos B., /ocuarnos T.0., Jwdasaamos 3.3.
[lepeHoc BemmecTBa B 971eMeHTEe TPENIMHOBATO-IIOPUCTON CPeIbl ¢ yaeToM 3hdek-
Ta MaMITH

Mymuros Y. P.
Breipoxknernble oToOpaykenns JIoTKu-BoabTeppsl 1 cOOTBETCTBYIONTNE UM OUTPa-
dBI KaK TUCKpeTHAs MOJETb SBOJTIOIIH B3aUMOIECHCTBUS IBYX BUPYCOB

Xyocaépos B.X., 3oxupos M.C.
AnomasibHAsE PUIBTPALNSA KUJIKOCTH B ILIOCKO-PAIHAIBHON OJHOPOTHON MOpPH-
cTOii cpefe .

Hasuposa 3.111., Kapa6a66a X.A.
YucieHHoe peleHne HeJUHeRHON 3a/1auu PUIBTPAINKA I'PYHTOBBIX M HAIIOPHBIX
BOJI,

Hopmypodos 4.5., Tusrosos M.A., Hopmypodos /1. Y.
YucieHHOE MOIETUPOBAHIE JTUHAMUKN AMILIHTY/IBI (PYHKITUU TOKA IS IIOCKOTO
redenusd [lyaseitsis

A6dyanaesa I 111
[TocTpoenne anrebpandecKu-runepboOInIecKOTo CILIaiHA eCTeCTBEHHOTO HATSIZKe-
HUSI BOCBMOIO TIOPSJIKA

Aunoes P.JI., Bepdvwes A.C., Hemamosa ﬂ 3.
Yucnennoe ucciaeoBaHue YCTORYUBOCTU 1O JIATyHOBY MPOTHUBOMOTOYHOM pas-
HOCTHOTI CXeMbl I/ KBa3UJIUHERHON Tuepbo/imuecKoil cucreMbl

boamaes A.K, Ilapdaesa O.D.
O6 oanoit uaTepnOIAUA DYHKIIUA HATYPAJTbHBIMEA CILTARHAMH .

Xaémos A.P., Hagacos A.1O.
OnruMasibHass WHTEPIOJIATTHOHHAS (bopMyﬂa ¢ TPOU3BOAHONW B THILOEPTOBOM
IPOCTPAHCTBE

Hladumemos M. X, Azamos C.C, Kobunros X.M.
OnruMusanus TPUOJTHKEHHBIX (POPMYJI HHTEIPHPOBAHUS /I KJIAaCCOB IMIEPHOIU-
qecKuX (pyHKImii

HUenamoves H.A., Townyaamos A.QO.
O npobiieMax IOMCKa BBHIOPOCOB B 3aJIa4e ¢ OJIHUM KJIACCOM

I0ndawes C.Y.
Toukas mactpoiika AlexNet mis knaccudpuramumu GopM KpbIl B Y30eKHCTaHE:
MOJIXOJI ¢ UCIOJIB30BAHHEM TpaHchepHOro 00ydeHHs

15

28

37

53

67

83

97

107

116

125

133



Contents

Khuzhayorov B., Dzhiyanov T.0., Eshdavlatov Z.Z.
Anomalous solute transport in an element of a fractured-porous medium with
memory effects. . . . . ..

Muminov U.R.
Degenerate Lotka-Volterra mappings and their corresponding bigraphs as a dis-
crete model of the evolution of the interaction of two viruses . . . ... ... ..

Khuzhayorov B.Kh., Zokirov M.S.
Anomalous filtration of liquid in a plane-radial homogeneous porous medium . .

Nazirova E., Karabaeva Kh.A.
Numerical solution of the nonlinear groundwater and pressurized water filtration
problem . . . .. L

Normurodov Ch.B., Tilovov M.A., Normurodov D.Ch.
Numerical modeling of the amplitude dynamics of the stream function for plane
Poiseuille low . . . . . . . . ...

Abdullaeva G.Sh.
Construction of an algebraic-hyperbolic natural tension spline of eighth order . .

Aloev R.D., Berdishev A.S., Nematova D.E.
Numerical study of Lyapunov stability of an upwind difference scheme for a
quasilinear hyperbolic system . . . . . . .. . .. ... ... ...

Boltaev A.K, Pardaeva O.F.

On an interpolation of a function by natural splines . . . . ... ... ... ...
Hayotov A.R., Nafasov A.Y.

On an optimal interpolation formula with derivative in a Hilbert space . . . . . .
Shadimetov M.Kh, Azamov S.S, Kobilov H.M.

Optimization of approximate integration formulas for periodic function classes
Ignatiev N.A., Toshpulatov A.O.

About problems with finding outliers in a single-class problem . . . . .. .. ..

Yuldashev S.U.
Fine-tuned AlexNet for roof shape classification in Uzbekistan: a transfer learn-
ing approach . . . . . ...



