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This article explores the significance of modifying SHAP (SHapley Additive exPlana-
tions) values to enhance model interpretability in machine learning. SHAP values provide
a fair attribution of feature contributions, making Al-driven decision-making more trans-
parent and reliable. However, raw SHAP values can sometimes be difficult to interpret
due to feature interactions, noise, and inconsistencies in scale. The article discusses key
techniques for modifying SHAP values, including feature aggregation, normalization, cus-
tom weighting, and noise reduction, to improve clarity and relevance in explanations. It
also examines how these modifications align interpretations with real-world needs, ensur-
ing that SHAP-based insights remain practical and actionable. By strategically refining
SHAP values, data scientists can derive more meaningful explanations, improving trust
in Al models and enhancing decision-making processes. The article provides a structured
approach to modifying SHAP values, offering practical applications and benefits across
various domains.
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1 Introduction

In the rapidly evolving landscape of artificial intelligence (Al) and machine learning
(ML), model interpretability is crucial for ensuring transparency, trust, and accountabil-
ity. SHAP (SHapley Additive exPlanations) values have emerged as a powerful tool for
explaining model predictions by attributing the contribution of each feature in a fair and
consistent manner. By leveraging concepts from cooperative game theory, SHAP values
provide both local (instance-level) and global (model-level) insights, making them widely
used across domains such as finance, healthcare, and automated decision-making systems.
However, while SHAP values offer robust interpretability, raw attributions may not always
be sufficient for real-world applications. Complex models often have interactions between
features, noisy attributions, or highly correlated predictors, which can obscure meaningful
insights. By modifying SHAP values strategically — through feature grouping, scaling,
interaction weighting, and noise filtering — data scientists can enhance interpretability,
improve decision-making, and make SHAP explanations more actionable.

Heart disease poses [1] a significant threat to global public health, severely affecting
individuals’ lives and overall well-being. Despite some success in existing prediction mod-
els, the complexity and variability of medical data often lead to diagnostic errors when
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these models are used in practice. Therefore, there is a critical need for more accurate and
efficient prediction models. This article presents a classification model for heart disease
prediction, utilizing the XGBoost algorithm and real medical datasets from Kaggle. To
enhance the interpretability of the model’s predictions, SHapley Additive exPlanations
(SHAP) values are employed, providing an insightful framework for understanding the
results. The proposed model demonstrates strong predictive performance and clarity, of-
fering a valuable resource for healthcare professionals in diagnosing and managing heart
disease.

Cardiovascular diseases [2] (CVD) are a global health concern, with projected mortality
reaching 23.3 million by 2030. This paper outlines a comprehensive strategy for developing
a system that combines machine learning and Explainable AI (XAI) techniques to create a
reliable and interpretable predictive model for coronary artery disease (CAD). The main
goal is to build predictive models while using SHAP (SHapley Additive exPlanations)
analysis to improve model transparency. The study evaluates various machine learning
algorithms to determine the most effective approach for CAD prediction. After selecting
the optimal model, SHAP analysis is used to clarify how different features influence the
model’s predictions, offering insights into the factors that drive CAD classification. This
research emphasizes the importance of both predictive accuracy and interpretability in
enhancing medical decision-making.

Automatically identifying heart diseases presents [3] a significant challenge in the
medical field, as it remains a leading cause of death. The prediction of heart failure, a
key symptom of cardiovascular disease, has become increasingly important to physicians.
Beyond enhancing feature ranking and clinical prediction, deep learning also aids in pro-
viding interpretable outputs for medical professionals. Explainable Artificial Intelligence
(XAI) aims to tackle the issue of deep learning models in healthcare being opaque, offering
insights into the model’s inner workings in a format that is understandable for users. In
our proposed approach, convolutional neural networks are employed to predict the dis-
ease, and the Deep SHAP model is utilized to visualize predictions. The model achieves
an accuracy of 0.90, a sensitivity of 0.97, and an Fl-score of 0.86 for class 1. The results
section includes various performance metrics, including recall, precision, and F1-score, for
both classes.

Cardiovascular Disease [4] (CVD) is a significant cause of disability and death among
individuals with Diabetes Mellitus (DM). International clinical guidelines for managing
Type 2 Diabetes Mellitus (T2DM) emphasize primary and secondary prevention, focus-
ing on evaluating CVD-related risk factors to initiate appropriate treatments. CVD risk
prediction models are valuable tools that help optimize the frequency of medical visits
and enable timely preventive and therapeutic actions against CVD events. Incorporat-
ing explainability features into these models can improve human understanding of the
decision-making process, increase transparency, and build trust in their adoption in clin-
ical settings. This study aims to develop and assess an explainable, personalized risk
prediction model for predicting fatal or non-fatal CVD events in T2DM patients. The
approach uses eXtreme Gradient Boosting (XGBoost) combined with the Tree SHAP
(SHapley Additive exPlanations) method to calculate 5-year CVD risk and provide in-
dividual explanations for the model’s predictions. Data from a 5-year follow-up of 560
T2DM patients are utilized for model development and evaluation. The results (AUC =
71.13%) demonstrate the model’s potential to handle the imbalanced dataset effectively
while offering clinically relevant insights into the decision-making process of the ensemble
model.
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Heart failure [5] (HF) is a leading cause of mortality, and accurately tracking its
progression and adjusting treatments are essential for improving patient outcomes. Ex-
perienced cardiologists can diagnose HF stages based on a combination of symptoms,
signs, and lab results from patients’ electronic health records (EHR), without needing
direct heart function measurements. In this study, we explored whether machine learn-
ing models, specifically the XGBoost model, could accurately predict a patient’s HF stage
based on EHR data. Additionally, we applied the SHapley Additive exPlanations (SHAP)
framework to identify key features and their interpretations. Our results show that, using
structured EHR data, our models could predict patients’ ejection fraction (EF) scores
with moderate accuracy. SHAP analysis helped identify important features and uncov-
ered potential clinical subtypes of HF. These findings offer valuable insights into designing
computational systems that can effectively monitor the progression of HF by continuously
analyzing patients’ EHR data.

This paper [6] explores a comparative study of various machine learning algorithms
using a binary classification dataset on heart disease. The study includes single classifiers
(Logistic Regression, K-Nearest Neighbors, Decision Trees, Support Vector Machines),
bagging methods (Random Forest), and boosting algorithms (XGBoost, AdaBoost, Cat-
Boost, Gradient Boosting). The use of an ensemble machine learning model combining
Random Forest, Gradient Boosting, AdaBoost, XGBoost, and CatBoost achieved excep-
tional accuracy of 89.13%. Further improvements in accuracy were achieved by applying
hyperparameter tuning techniques (GridSearchCV and RandomSearchCV) and imple-
menting XAI methods (LIME and SHAP). In a comparative analysis of the boosting
algorithms, CatBoost and AdaBoost outperformed others in identifying cardiovascular
disease. Hyperparameter tuning improved the Random Forest classifier’s accuracy to an
impressive 88.26%.

This study |7] explores the potential of machine learning classification to transform car-
diovascular disease prediction. By leveraging diverse datasets that include demographic,
lifestyle, and clinical data, the research applies various algorithms, including Logistic
Regression, KNN, SVM, Decision Tree Classifier, GradientBoost, AdaBoost, XGBoost,
along with techniques like Hyperparameter tuning, LIME, and SHAP, to build prediction
models. The goal is to improve individualized risk assessments and their accuracy, thus
enabling early interventions and preventative strategies. The results highlight the effec-
tiveness of machine learning in predicting cardiovascular risks, signaling a significant shift
toward preventive healthcare. With continued development, these models could be inte-
grated into clinical practice, potentially reducing the global prevalence of cardiovascular
diseases by facilitating timely, targeted therapies.

This study [8] aims to develop and validate a machine learning model that incor-
porates dietary antioxidants to predict cardiovascular disease (CVD)-cancer comorbidity
and to understand the role of antioxidants in disease prediction. Data for this study
were sourced from the National Health and Nutrition Examination Survey, focusing on
antioxidants such as vitamins, minerals, and polyphenols as key features. In addition to
antioxidants, demographic, lifestyle, and health condition data were included to enhance
model accuracy. The feature preprocessing process involved removing collinear features,
addressing class imbalance, and normalizing the data.

Hypertension, a prevalent and complex cardiovascular disease associated with a high
risk of mortality and morbidity, has become a target for detection using Artificial Intelli-
gence (Al) methods. However, due to the "black-box"nature of many Al models, doctors
have been unable to identify the specific reasons behind hypertension. Therefore, it is
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crucial to elucidate the connections between hypertension and various biomarkers. In
this study, local interpretable model-agnostic explanations (LIME) and SHapley Additive
exPlanations (SHAP) were used to clarify the hypertension risk predictions made by an
extreme gradient boost (XGBoost) model.

The study [9] analyzed a comprehensive case record of 623 patients, which included
data on reported hypertension, other diseases, medication usage, and laboratory results
for 13 critical biomarkers. The XGBoost model demonstrated exemplary performance,
achieving an accuracy of 99.4%, precision of 100%, recall of 97.30%, and an Fl-score of
98.6%), highlighting the potential of Machine Learning (ML) in healthcare applications.
Additionally, the Biogeography-Based Optimization (BBO) algorithm was employed to
identify an effective subset of features. The BBO algorithm selected nearly half of the
original features. Using only 14 features selected by BBO, the model achieved an accuracy
of 97.7%, precision of 96.9%, recall of 93.9%, and an Fl-score of 95.4%, demonstrating
the algorithm’s effectiveness in feature selection.

In this study [10] , we explored the value of longitudinal data compared to cross-
sectional data by employing six distinct modeling strategies from statistics, machine learn-
ing, and deep learning. These models incorporated repeated measures to conduct survival
analysis of the time-to-cardiovascular event in the Coronary Artery Risk Development in
Young Adults (CARDIA) cohort. We then evaluated and compared the use of model-
specific interpretability methods, such as Random Survival Forest Variable Importance,
and model-agnostic methods, including SHapley Additive exPlanation (SHAP) and Tem-
poral Importance Model Explanation (TIME), to enhance cardiovascular risk prediction
using the top-performing models.

This article [11] applies SHAP values to assess feature importance in an XGBoost-
based model for short-term load forecasting using Korea Power Exchange data. It high-
lights limitations of traditional SHAP metrics and proposes a new metric incorporating
the coefficient of determination to better reflect SHAP value distribution. The study
demonstrates improved relevance for forecasting performance, offering practical insights
for energy sector applications.

This study [12] compares SHAP values with built-in feature importance methods (e.g.,
from XGBoost, Random Forest) for credit card fraud detection. Using the Kaggle Credit
Card Fraud Detection Dataset, it evaluates five classifiers across various feature subset
sizes. Results show that importance-based methods outperform SHAP in terms of Area
under the Precision-Recall Curve (AUPRC), providing a critical perspective on SHAP’s
effectiveness in high-dimensional data contexts.

This paper [13| introduces ShapG, a novel model-agnostic method enhancing SHAP
by integrating graph structures. It constructs an undirected graph from the dataset using
correlation coefficients and samples data to approximate Shapley values efficiently. Com-
pared to other XAI methods, ShapG offers improved accuracy and reduced computational
complexity, validated on two datasets. It’s a promising advancement for scalable feature
importance in complex models.

This article [14] explores the relationship between SHAP scores and feature impor-
tance scores (FISs), linking them to voting power indices from game theory. It critiques
SHAP’s potential to produce misleading results and proposes new FISs with desirable
properties (e.g., fairness in attribution). The study rigorously analyzes existing power
indices, offering a theoretical framework to refine SHAP-based explanations for more re-
liable XAI.
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The guide [15] focuses on applying SHAP to interpret supervised ML models in drug
development, covering visualization plots, software implementation, and special consid-
erations (e.g., binary endpoints, time-series). It uses regression examples to illustrate
SHAP’s intuitive output in units matching predictions, while noting limitations like lack
of directionality nuance. It’s a practical resource for practitioners seeking to leverage
SHAP in pharmaceutical research.

The above scientific research shows that the SHAP value divides the factors affecting
the accuracy of artificial intelligence models into levels. Based on this, we proposed the
following new SHAP value.

2 Method

In the presented scientific studies, several methods for determining the degree of sig-
nificance of properties are presented. Among these, the most accurate is the SHAP value.
The formula we propose below is an improvement of the SHAP value, which also takes
into account the relationship between properties.

o= > BHESEED rsugn - s,
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@; — is the SHAP value for feature, S — a subset of all features excluding, NV — is the total
set of features, f (S) — is the model output given feature set.
While SHAP values provide reliable explanations, certain scenarios necessitate modifica-
tions:
Feature Grouping, to simplify interpretation by combining related features;
Normalization, to standardize values and enable better comparisons;
Weighting Contributions, to highlight critical features based on domain knowledge;
Removing Noise, to filter out low-impact features and focus on meaningful insights.
Methods and Given Approach To enhance SHAP-based interpretability, we propose a
method that incorporates K-Means binning and Mutual Information (MI) weighting to
improve feature interactions in SHAP calculations. First, K-Means Binning for Continu-
ous Features ensures that MI, which typically requires categorical variables, can be applied
effectively. K-Means clustering groups numerical features into bins, effectively converting
continuous data into discrete representations, using the objective function:

K=argmin) 3 (z—m) (1)

k=1 zeC}

N — is the number of clusters (bins), C} — represents data points in the k-th cluster, py
— is the centroid (mean) of cluster Cy.

After clustering (1), feature values are replaced by cluster labels, reducing dimension-
ality while preserving structure. Next, Mutual Information-Based Interaction Weighting
is introduced to quantify nonlinear dependencies between features using:

- - P, Jj)
I(i,5) = P(i,j)log ————= 2
(i,7) ;{ (i,4) EFO P ) (2)

P(i,j) — joint probability of two discrete (binned) features, P(i), P(j) — Marginal prob-
abilities of individual features.
Q5 = I (Zaj) : (3)
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The MI score serves as a weight «; ; in the SHAP interaction term, refining feature con-
tributions based on statistical dependencies. Finally, Integrating Modified SHAP Values
incorporates both independent contributions and interaction-based adjustments:

o' =it Y an; - [f (i) = f (i) = f {GD)- (4)

J#i

3 Results

Features with higher MI scores receive more weight in SHAP-based explanations, im-
proving interpretability in complex models. Impact on Model Interpretability Modifying
SHAP values enhances decision-making by improving clarity, ensuring domain-specific
relevance, and enabling better comparisons across datasets and models. The method
reduces noise, prevents over-attribution of weakly correlated features, and makes SHAP-
based interpretations more structured and reliable.

Model Performance Comparison

Models
N Logistic Regression

A ‘~ & >
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Figure 1
Table 1
Metric Original shap | Shap modification
Accuracy 7. 7% 82.9%
Precision 82.9% 96.9%
Recall 75.1% 93.9%
F1-Score 82.9% 95.4%
AUC (Area Under Curve) 78.8% 93.0%
Specificity 71.8% 88.0%
False Positive Rate (FPR) 22.2% 12.0%
False Negative Rate (FNR) 17.0% 6.1%
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Enables Mutual Information Analysis Transforming continuous features into clusters
using K-Means makes Mutual Information (MI) applicable across various datasets.
Advantages of the Modification

e Maintains Data Structure — K-Means groups features based on natural patterns,
avoiding arbitrary binning and preserving meaningful relationships.

e Strikes a Balance Between Granularity and Interpretability — Instead of working
with raw continuous values, clustering provides a structured approach to capturing de-
pendencies while keeping the results interpretable.

Mutual Information’s Role in Feature Interactions

e Captures Nonlinear Relationships — Unlike correlation-based techniques, MI detects
both linear and nonlinear dependencies, enhancing the robustness of feature interaction
analysis.

e Optimizes SHAP Interaction Terms — Using MI as an interaction weight o ; en-
sures that SHAP attributions are grounded in actual statistical relationships rather than
independent assumptions.

e Filters Out Redundant or Noisy Contributions — Features with low MI scores have
a reduced impact on SHAP interaction terms, leading to more precise and meaningful
explanations.

Improving the Interpretability of Traditional SHAP Values

e Goes Beyond Individual Feature Contributions — While standard SHAP values
treat features independently, incorporating interaction effects offers a more accurate rep-
resentation of dependencies.

e Provides More Reliable and Contextual Explanations — Adjusting SHAP attri-
butions based on interaction weights prevents correlated features from skewing model
interpretations, addressing common interpretability challenges.

4 Conclusion

SHAP values have proven to be an essential tool for model interpretability, offering
clear insights into how features influence predictions. However, their effectiveness can
be further enhanced through strategic modifications. By leveraging K-Means binning to
enable Mutual Information-based interaction weighting, this approach refines SHAP attri-
butions, ensuring that feature dependencies are accurately captured. These enhancements
reduce noise, improve feature weighting, and prevent misleading attributions, making ex-
planations more structured and reliable. Ultimately, modifying SHAP values allows for
clearer, domain-specific insights that facilitate better decision-making across various ma-
chine learning applications. By understanding when and how to apply these modifications,
data scientists can achieve more transparent, interpretable, and meaningful Al-driven in-
sights.
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B nannoii crarhe pacemarpuBaeTcs BazxkHOCTh Mogndukarm snadernit SHAP (SHap-
ley Additive ExPlanations) jijisi mOBbIIIeHNsT MHTEPIPETAIMH MOJIe/Iel B MAITHHHOM 00Y-
gernn. SHAP-1ienHOCTH 06ECIeInBaIOT CIIPABEJINBOE PpACIIpee/IeHue B3HOCOB Py HKITHIA,
neyiast Al-opueHTHpPOBAHHOE TIPUHSITAE PEIIeHuil 6oJiee TPo3padHbiM U HaJteKHbIM. OJ1-
HaKO mcxonaHble 3HadeHust SHAP wmHOrma MOryT OBITH TPYIHO MHTEPIPETHPOBATH U3-3a
B3anMoIeiicTBUsT PYHKITUH, IIIyMa U HECOOTBeTCTBUI MaciiTaba. B crarbe obcyxmarorcs
KJTI0YEeBBbIe MeTO B Mo uKarm 3uadennit SHAP, BkiTiogast arperamuio xapakKTepUCTHK,
HOPMAJIN3AINIO, UH/IUBUYaIbHBII BEC U CHUXKEHHUE IIIyMa, JJIsI TOBBIIIIEHNS SICHOCTH U aK-
TyaJbHOCTH O0bsicHeHMit. OH TaKKe PAcCMATPUBAET, KAK 3TU U3MEHEHUsI COTJIACYIOTCS C
MHTEPIPETAIUAMEA PEAJIbHBIX TOTPeOHOCTEH, obecrieunBasi, 9TOObI UJ€U, OCHOBAHHBIE HA
SHAP, ocraBamuch mpakTudecKuMu u JeficTBeHHbIMA. CTpaTernvecKu yTOYHsIS 3HATE-
unst SHAP, yuerble mo JaHHBIM MOTYT TOJYYUTH OOJiee COMEpPKATENIbHBIE OODICHEHNS,
HOBBIMIas fgoBepue K Momesisim VU u yiydinas mporiecchl IpUuHATHS penieHuil. B craTbe
[peJICTaBJIeH CTPYKTYPUPOBAHHBIHN 1ojixo/ K Mofuukanuu 3nadenuniit SHAP, npemiara-

IOH.[I/II7I OpaKTU4IeCKHe IIpUMEHEHUA U IIPpENMYIIECTBa B Pa3JIMIHBIX 00J1aCTSIX.

Kuarouesbie ciioBa: uHTEepupeTabeIbHOCTE MOJEN, BasKHOCTD IPU3HAKOB, HOPMAJIN3a-
s, Tpo3padaocts NI

Huruposauue: [llapunos /. K., Caudos A.J/[. Momudunuposanusiit meton SHAP s
UHTEPIPETUPYEMOTO TPOTHO3UPOBAHUS OCJIOYKHEHUN CEePIEeIHO-COCY/IUCTHIX 3a00JIeBa-

uuit // IIpobiieMbl BBIYMC/IUTEIBHON U NPHUKJIaAHOH Maremaruku. — 2025. — Ne2(64). —
C.114-122.

DOTI: https://doi.org/10.71310/pcam.2  64.2025.10.
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